Skip to main content

Quantum Neural Networks Achieving Quantum Algorithms

  • Conference paper
  • First Online:
Book cover Artificial Life and Evolutionary Computation (WIVACE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Included in the following conference series:

  • 529 Accesses

Abstract

This paper explores the possibility to construct quantum algorithms by means of neural networks endowed with quantum gates evolved to achieve prescribed goals. First tentatives are performed on the well known Deutsch and Deutsch-Jozsa problems. Results are promising as solutions are detected for different sizes and initializations of the problems using a standard evolutionary learning process. This approach is then used to design quantum operators by combining simple quantum operators belonging to a predefined set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The selection is performed by a roulette wheel selection. The genetic operators are the 1-point crossover and the uniform mutation. Their respective rates are 0.9 and 0.01. The population size is 100 and the maximum number of generations is 10000. The survival of best individuals is ensured by elitism.

  2. 2.

    The temperature is initialized to 1, in such a way that a candidate decreasing the objective function by 0.5 has a probability of \(\frac{2}{3}\) to be accepted. The cooling parameter is fixed to 0.99995 for a slow diminution of this probability.

References

  1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  Google Scholar 

  2. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 454(1969), 339–354 (1998). https://doi.org/10.1098/rspa.1998.0164

    Article  MathSciNet  MATH  Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  MATH  Google Scholar 

  4. Deutsch, D.: Quantum computational networks. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 425, pp. 73–90. The Royal Society (1989). https://doi.org/10.1098/rspa.1989.0099

  5. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 439(1907), 553–558 (1992). https://doi.org/10.1098/rspa.1992.0167

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  7. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  8. Mermin, D.: Calculs et algorithmes quantiques: méthodes et exemples. EDP Sciences, Les Ulis (2010)

    Google Scholar 

  9. Mintert, F., Viviescas, C., Buchleitner, A.: Basic concepts of entangled states. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence. LNP, vol. 768, pp. 61–86. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88169-8_2

    Chapter  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Andrea Roli for his critical reading of a preliminary version of the paper.

This research used computational resources of the “Plateforme Technologique de Calcul Intensif (PTCI)” located at the University of Namur, Belgium, which is supported by the F.R.S.-FNRS.

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimisation), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Nicolay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicolay, D., Carletti, T. (2018). Quantum Neural Networks Achieving Quantum Algorithms. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics