Advertisement

Quantum Neural Networks Achieving Quantum Algorithms

  • Delphine Nicolay
  • Timoteo Carletti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

This paper explores the possibility to construct quantum algorithms by means of neural networks endowed with quantum gates evolved to achieve prescribed goals. First tentatives are performed on the well known Deutsch and Deutsch-Jozsa problems. Results are promising as solutions are detected for different sizes and initializations of the problems using a standard evolutionary learning process. This approach is then used to design quantum operators by combining simple quantum operators belonging to a predefined set.

Notes

Acknowledgements

We thank Andrea Roli for his critical reading of a preliminary version of the paper.

This research used computational resources of the “Plateforme Technologique de Calcul Intensif (PTCI)” located at the University of Namur, Belgium, which is supported by the F.R.S.-FNRS.

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimisation), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

References

  1. 1.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).  https://doi.org/10.1103/PhysRevA.52.3457CrossRefGoogle Scholar
  2. 2.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 454(1969), 339–354 (1998).  https://doi.org/10.1098/rspa.1998.0164MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 400(1818), 97–117 (1985).  https://doi.org/10.1098/rspa.1985.0070MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deutsch, D.: Quantum computational networks. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 425, pp. 73–90. The Royal Society (1989).  https://doi.org/10.1098/rspa.1989.0099
  5. 5.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 439(1907), 553–558 (1992).  https://doi.org/10.1098/rspa.1992.0167MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)zbMATHGoogle Scholar
  7. 7.
    Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  8. 8.
    Mermin, D.: Calculs et algorithmes quantiques: méthodes et exemples. EDP Sciences, Les Ulis (2010)Google Scholar
  9. 9.
    Mintert, F., Viviescas, C., Buchleitner, A.: Basic concepts of entangled states. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence. LNP, vol. 768, pp. 61–86. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88169-8_2CrossRefGoogle Scholar
  10. 10.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999).  https://doi.org/10.1137/S0036144598347011MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Namur Institute for Complex Systems (naXys)University of NamurNamurBelgium

Personalised recommendations