Skip to main content

Immunometabolism of Dendritic Cells and T Cells

  • Chapter
  • First Online:
Damage-Associated Molecular Patterns in Human Diseases

Abstract

In this short chapter, some aspects of immunometabolism of dendritic cells and T cells are briefly sketched. The dichotomous function of dendritic cells is associated with two different metabolic pathways. While resting dendritic cells use fatty acid oxidation to fuel the mitochondrial oxidative phosphorylation pathway, activated immunostimulatory dendritic cells typically switch to aerobic glycolysis, the Otto Warburg metabolism. In contrast to the metabolism of immunostimulatory dendritic cells, an inherently catabolic process, the Krebs cycle and fatty acid oxidation, plays a significant role in the development of tolerogenic dendritic cells.

Like dendritic cells, T cells must adapt to a vast array of environmental DAMPs as part of their regular development, during which they undergo a dramatic metabolic remodelling process as well. Research in this modern area of T cell biology has yielded striking findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate T cell signalling and influence their differentiation, function, and fate. For example, like immunostimulatory dendritic cells, immune response-promoting activated helper T cell subsets switch their metabolism to aerobic glycolysis, whereas regulatory T cells are less dependent on glycolysis but rely on oxidation phosphorylation pathway. Together, it has now become apparent that the dynamic regulation of metabolic pathways in both cell types drives our immune system to shape distinct T cell responses as required by any given stressful and/or injurious situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761313001581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray PJ, Rathmell J, Pearce E. SnapShot: immunometabolism. Cell Metab. 2015;22:190–190.e1. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413115002818

    Article  CAS  PubMed  Google Scholar 

  3. O’Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213:15–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26694970

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Neill LAJ, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493:346–55. https://doi.org/10.1038/nature11862.

    Article  CAS  PubMed  Google Scholar 

  5. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42:419–30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761315000801

    Article  CAS  PubMed  Google Scholar 

  6. Tannahill GM, Curtis AM, Adamik J, EM P-MD, AF MG, G G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496:238–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23535595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med. 2015;212:1345–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26261266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warburg O, Gawehn K, Geissler AW. Metabolism of leukocytes. Z Naturforsch B. 1958;13B:515–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13593654

    Article  CAS  PubMed  Google Scholar 

  9. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15:18–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25534620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGettrick AF, O’Neill LAJ. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288:22893–8. https://doi.org/10.1074/jbc.R113.486464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cameron AM, Lawless SJ, Pearce EJ. Metabolism and acetylation in innate immune cell function and fate. Semin Immunol. 2016;28:408–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28340958

    Article  CAS  PubMed  Google Scholar 

  12. Saas P, Varin A, Perruche S, Ceroi A. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: potential ways to control these functions. Version 2. F1000Res. 2017;6:456. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28580131

    Article  Google Scholar 

  13. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9. https://doi.org/10.1182/blood-2009-10-249540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol. 2008;180:4697–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354193

    Article  CAS  PubMed  Google Scholar 

  15. Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15:323–32. https://doi.org/10.1038/ni.2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Everts B, Amiel E, van der Windt GJW, Freitas TC, Chott R, Yarasheski KE, et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood. 2012;120:1422–31. https://doi.org/10.1182/blood-2012-03-419747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malinarich F, Duan K, Hamid RA, Bijin A, Lin WX, Poidinger M, et al. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J Immunol. 2015;194:5174–86. https://doi.org/10.4049/jimmunol.1303316.

    Article  CAS  PubMed  Google Scholar 

  18. Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology. 2010;129:525–35. https://doi.org/10.1111/j.1365-2567.2009.03205.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira GB, Vanherwegen A-S, Eelen G, Gutiérrez ACF, Van Lommel L, Marchal K, et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 2015;10:711–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124715000261

    Article  CAS  PubMed  Google Scholar 

  20. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161:1527–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867415005759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pearce EL, Poffenberger MC, Chang C-H, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454. https://doi.org/10.1126/science.1242454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Windt GJW, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev. 2012;249:27–42. https://doi.org/10.1111/j.1600-065X.2012.01150.x.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chao T, Wang H, Ho P-C. Mitochondrial control and guidance of cellular activities of T cells. Front Immunol. 2017;8:473. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28484465

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169:570–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28475890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303. https://doi.org/10.4049/jimmunol.1003613.

    Article  CAS  PubMed  Google Scholar 

  26. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016;354:481–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27708054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21708926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Araujo L, Khim P, Mkhikian H, Mortales C-L, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28059703

  29. Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown SA, et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity. 2016;45:540–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27637146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kopf H, de la Rosa GM, Howard OMZ, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol. 2007;7:1819–24. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1567576907002809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761309002374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25:1282–1293.e7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413116306519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, W.G. (2018). Immunometabolism of Dendritic Cells and T Cells. In: Damage-Associated Molecular Patterns in Human Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-78655-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78655-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78654-4

  • Online ISBN: 978-3-319-78655-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics