Skip to main content

Radical Prostatectomy in the Metastatic Setting

  • Chapter
  • First Online:
Prostate Cancer

Abstract

Multiple studies as outlined before have demonstrated a benefit of RP over ADT alone in the N1M0 setting. Thus, we would not hesitate to offer a patient radical prostatectomy with an extended PLND (including removal of the low retroperitoneal nodes in some cases) if he is healthy and interested in an aggressive approach. Preoperative counseling would be extensive, and we would emphasize that there is a high chance of a multimodal approach. Postoperative ADT will often be advocated if the number of positive nodes is three or more or if he has pT3b and one or two nodes positive. Postoperative radiotherapy to the fossa and whole pelvis will also often be delivered (again depending on the patient’s risk) when the patient has regained continence and is usually given in conjunction with ADT. Lastly, we would risk stratify his disease postoperatively and have him understand his overall prognosis based on our models detailed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311:1143–9.

    Article  CAS  Google Scholar 

  2. Schröder FH, et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384:2027–35.

    Article  Google Scholar 

  3. Draisma G, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101:374–83.

    Article  Google Scholar 

  4. Wilt TJ, Dahm P. PSA screening for prostate cancer: why saying no is a high-value health care choice. J Natl Compr Cancer Netw. 2015;13:1566–74.

    Article  CAS  Google Scholar 

  5. US Preventive Services Task Force. Screening for prostate cancer: US. preventive services task force recommendation statement. Ann Intern Med. 2008;149:185–91.

    Article  Google Scholar 

  6. Moyer VA, US Preventive Services Task Force. Screening for prostate cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2012;157:120–34.

    Article  Google Scholar 

  7. Jemal A, SA F, Ma J, al e. Prostate cancer incidence and psa testing patterns in relation to uspstf screening recommendations. JAMA. 2015;314:2054–61.

    Article  CAS  Google Scholar 

  8. Li J, Berkowitz Z, Hall IJ. Decrease in prostate cancer testing following the US preventive services task force (USPSTF) recommendations. J Am Board Fam Med. 2015;28:491–3.

    Article  Google Scholar 

  9. Fleshner K, Carlsson SV, Roobol MJ. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat Rev Urol. 2017;14:26–37.

    Article  CAS  Google Scholar 

  10. Yoo S, Kim JK, Jeong IG. Multiparametric magnetic resonance imaging for prostate cancer: a review and update for urologists. Korean J Urol. 2015;56:487–97.

    Article  Google Scholar 

  11. Wegelin O, et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur Urol. 2017;71:517–31.

    Article  Google Scholar 

  12. van Hove A, et al. Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J Urol. 2014;32:847–58.

    Article  Google Scholar 

  13. Siddiqui MM, et al. Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313:390–7.

    Article  CAS  Google Scholar 

  14. Valerio M, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol. 2015;68:8–19.

    Article  Google Scholar 

  15. Schoots IG, et al. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard Transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2015;68:438–50.

    Article  Google Scholar 

  16. Meng X, et al. Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusion-targeted prostate biopsy outcomes. Eur Urol. 2016;69:512–7.

    Article  Google Scholar 

  17. Ahmed HU, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815–22.

    Article  Google Scholar 

  18. Weinreb JC, et al. PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40.

    Article  Google Scholar 

  19. Radtke JP, et al. Combined clinical parameters and multiparametric magnetic resonance imaging for advanced risk modeling of prostate cancer—patient-tailored risk stratification can reduce unnecessary biopsies. Eur Urol. 2017;72(6):888–96. https://doi.org/10.1016/j.eururo.2017.03.039.

    Article  PubMed  Google Scholar 

  20. Venderink W, et al. Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.02.021.

  21. Furuya K, et al. Measurement of serum isoform [−2]proPSA derivatives shows superior accuracy to magnetic resonance imaging in the diagnosis of prostate cancer in patients with a total prostate-specific antigen level of 2–10 ng/ml. Scand J Urol. 2017;51:251–7.

    Article  CAS  Google Scholar 

  22. Tosoian JJ, et al. Prostate health index density improves detection of clinically significant prostate cancer. BJU Int. 2017;120(6):793–8. https://doi.org/10.1111/bju.13762.

    Article  CAS  PubMed  Google Scholar 

  23. Simmons LAM, et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br J Cancer. 2017;116:1159–65.

    Article  Google Scholar 

  24. Baur ADJ, et al. A prospective study investigating the impact of multiparametric MRI in biopsy-naĂ¯ve patients with clinically suspected prostate cancer: the PROKOMB study. Contemp Clin Trials. 2017;56:46–51.

    Article  Google Scholar 

  25. Muller BG, et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology. 2015;277:741–50.

    Article  Google Scholar 

  26. Hansen NL, et al. Comparison of initial and tertiary centre second opinion reads of multiparametric magnetic resonance imaging of the prostate prior to repeat biopsy. Eur Radiol. 2017;27:2259–66.

    Article  Google Scholar 

  27. Hamoen EHJ, de Rooij M, Witjes JA, Barentsz JO, Rovers MM. Eur Urol. 2015;67:1112–21.

    Article  Google Scholar 

  28. Radtke JP, Teber D, Hohenfellner M, Hadaschik BA. The current and future role of magnetic resonance imaging in prostate cancer detection and management. Transl Androl Urol. 2015;4(3):326–41.

    PubMed  PubMed Central  Google Scholar 

  29. Cabarrus MC, Westphalen AC. Multiparametric magnetic resonance imaging of the prostate—a basic tutorial. Transl Androl Urol. 2017;6:376–86.

    Article  Google Scholar 

  30. Kiss B, Thoeny HC, Studer UE. Current status of lymph node imaging in bladder and prostate cancer. Urology. 2016;96:1–7.

    Article  Google Scholar 

  31. Hövels AM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95.

    Article  Google Scholar 

  32. Thoeny HC, Froehlich JM, Triantafyllou M, Bains LJ, Vermathen P. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014;273:125–35.

    Article  Google Scholar 

  33. Evangelista L, et al. New clinical indications for 18 F/11 C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70:161–75.

    Article  Google Scholar 

  34. Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:18–27.

    Article  CAS  Google Scholar 

  35. Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63:1040–8.

    Article  Google Scholar 

  36. von Eyben FE, Picchio M, von Eyben R, Rhee H, Bauman G. 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: a systematic review and meta-analysis. Eur Urol Focus. 2016. https://doi.org/10.1016/j.euf.2016.11.002.

  37. Gandaglia G, et al. Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol. 2017;72:632–40.

    Article  Google Scholar 

  38. Briganti A, et al. Impact of age and comorbidities on long-term survival of patients with high-risk prostate cancer treated with radical prostatectomy: a multi-institutional competing-risks analysis. Eur Urol. 2013;63:693–701.

    Article  Google Scholar 

  39. da Costa WH, GuimarĂ£es GC. Radical prostatectomy in metastatic prostate cancer: is there enough evidence? | opinion: yes. Int Brazilian J Urol. 2016;42:876–9.

    Article  Google Scholar 

  40. Tzelepi V, et al. Persistent, biologically meaningful prostate cancer after 1 year of androgen ablation and docetaxel treatment. J Clin Oncol. 2011;29:2574–81.

    Article  CAS  Google Scholar 

  41. Gannon PO, et al. Presence of prostate cancer metastasis correlates with lower lymph node reactivity. Prostate. 2006;66:1710–20.

    Article  Google Scholar 

  42. Sharma V, Dong H, Kwon E, Karnes RJ. Positive pelvic lymph nodes in prostate cancer harbor immune suppressor cells to impair tumor-reactive T cells. Eur Urol Focus. 2016. https://doi.org/10.1016/j.euf.2016.09.003.

  43. Engel J, et al. Platinum priority—prostate cancer survival benefit of radical prostatectomy in lymph node—positive patients with prostate cancer. Eur Urol. 2010;57:754–61.

    Article  Google Scholar 

  44. Ghavamian R, Bergstralh EJ, Blute MJ, Slezak J, Zincket H. Radical retropubic prostatectomy plus orchiectomy versus orchiectomy alone for pTxN+ prostate cancer: a matched comparison. J Urol. 1999;161:1223–8.

    Article  CAS  Google Scholar 

  45. Bhindi B, et al. Impact of radical prostatectomy on long-term oncologic outcomes in a matched cohort of men with pathological node positive prostate cancer managed by castration. J Urol. 2017;198:86–91.

    Article  Google Scholar 

  46. Gakis G, et al. The role of radical prostatectomy and lymph node dissection in lymph node—positive prostate cancer: a systematic review of the literature. Eur Urol. 2014;66:191–9.

    Article  Google Scholar 

  47. Messing EM, et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006;7:472–9.

    Article  CAS  Google Scholar 

  48. Steuber T, et al. Radical prostatectomy improves progression-free and cancer-specific survival in men with lymph node positive prostate cancer in the prostate-specific antigen era: a confirmatory study. BJU Int. 2011;107:1755–61.

    Article  Google Scholar 

  49. Veeratterapillay R, Goonewardene SS, Barclay J, Persad R, Bach C. Radical prostatectomy for locally advanced and metastatic prostate cancer. Ann R Coll Surg Engl. 2017;99:259–64.

    Article  CAS  Google Scholar 

  50. Moschini M, Soria F, Briganti A, Shariat SF. The impact of local treatment of the primary tumor site in node positive and metastatic prostate cancer patients. Prostate Cancer Prostatic Dis. 2017;20:7–11.

    Article  CAS  Google Scholar 

  51. Fahmy O, Khairul-Asri MG, Hadi SHSM, Gakis G, Stenzl A. The role of radical prostatectomy and radiotherapy in treatment of locally advanced prostate cancer: a systematic review and meta-analysis. Urol Int. 2017;99:249–56.

    Article  CAS  Google Scholar 

  52. Fossati N, et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur Urol. 2017;72:84–109.

    Article  Google Scholar 

  53. Seisen T, et al. Efficacy of local treatment in prostate cancer patients with clinically pelvic lymph node-positive disease at initial diagnosis. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.08.011.

  54. Cagiannos I, et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol. 2003;170:1798–803.

    Article  Google Scholar 

  55. Briganti A, et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol. 2012;61:480–7.

    Article  Google Scholar 

  56. Winter A, et al. Updated Nomogram incorporating percentage of positive cores to predict probability of lymph node invasion in prostate cancer patients undergoing sentinel lymph node dissection. J Cancer. 2017;8:2692–8.

    Article  Google Scholar 

  57. Grivas N, et al. Validation and head-to-head comparison of three nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended and/or sentinel lymph node dissection. Eur J Nucl Med Mol Imaging. 2017;44(13):2213–26. https://doi.org/10.1007/s00259-017-3788-z.

    Article  PubMed  Google Scholar 

  58. van der Poel HG, et al. Sentinel node biopsy for prostate cancer: report from a consensus panel meeting. BJU Int. 2017;120:204–11.

    Article  Google Scholar 

  59. Abdollah F, et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol. 2015;67:212–9.

    Article  Google Scholar 

  60. Moschini M, et al. Natural history of clinical recurrence patterns of lymph node-positive prostate cancer after radical prostatectomy. Eur Urol. 2017;69:135–42.

    Article  Google Scholar 

  61. Seay TM, Blute ML, Zincke H. Long-term outcome in patients with pTxN+ adenocarcinoma of prostate treated with radical prostatectomy and early androgen ablation. J Urol. 1998;159:357–64.

    Article  CAS  Google Scholar 

  62. Schiavina R, et al. Differing risk of cancer death among patients with lymph node metastasis after radical prostatectomy and pelvic lymph node dissection: identification of risk categories according to number of positive nodes and Gleason score. BJU Int. 2013;111:1237–44.

    Article  Google Scholar 

  63. Abdollah F, et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J Clin Oncol. 2014;32:3939–47.

    Article  Google Scholar 

  64. Moschini M, et al. Risk stratification of pN+ prostate cancer after radical prostatectomy from a large single institutional series with long-term followup. J Urol. 2016;195:1773–8.

    Article  Google Scholar 

  65. Carlsson SV, et al. Pathological features of lymph node metastasis for predicting biochemical recurrence after radical prostatectomy for prostate cancer. J Urol. 2013;189:1314–9.

    Article  Google Scholar 

  66. Touijer KA, Mazzola CR, Sjoberg DD, Scardino PT, Eastham JA. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol. 2014;65:20–5.

    Article  Google Scholar 

  67. Nguyen DP, et al. Updated postoperative nomogram incorporating the number of positive lymph nodes to predict disease recurrence following radical prostatectomy. Prostate Cancer Prostatic Dis. 2017;20:105–9.

    Article  CAS  Google Scholar 

  68. Culp SH, Schellhammer PF, Williams MB. Might men diagnosed with metastatic prostate cancer benefit from definitive treatment of the primary tumor? A SEER-Based Study. Eur Urol. 2014;65:1058–66.

    Article  Google Scholar 

  69. Moschini M, Morlacco A, Kwon E, Rangel LJ, Karnes RJ. Treatment of M1a/M1b prostate cancer with or without radical prostatectomy at diagnosis. Prostate Cancer Prostatic Dis. 2017;20:117–21.

    Article  CAS  Google Scholar 

  70. Tewari A, et al. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol. 2012;62:1–15.

    Article  Google Scholar 

  71. Ficarra V, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62:405–17.

    Article  Google Scholar 

  72. Sooriakumaran P, et al. A multi-institutional analysis of perioperative outcomes in 106 men who underwent radical prostatectomy for distant metastatic prostate cancer at presentation. Eur Urol. 2016;69:788–94.

    Article  Google Scholar 

  73. Lin CC, Gray PJ, Jemal A, Efstathiou JA. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J Natl Cancer Inst. 2015;107:djv119.

    Article  Google Scholar 

  74. Rusthoven CG, et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol. 2014;88:1064–73.

    Article  Google Scholar 

  75. FossĂ¥ SD, et al. Ten- and 15-yr prostate cancer-specific mortality in patients with nonmetastatic locally advanced or aggressive intermediate prostate cancer, randomized to lifelong endocrine treatment alone or combined with radiotherapy: final results of the Scandinavian. Eur Urol. 2016;70:684–91.

    Article  Google Scholar 

  76. Mason MD, et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J Clin Oncol. 2015;33(19):2143–50.

    Article  Google Scholar 

  77. Koontz BF, Bossi A, Cozzarini C, Wiegel T, D’Amico A. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol. 2015;68:683–91.

    Article  Google Scholar 

  78. Van Hemelryk A, et al. The outcome for patients with pathologic node-positive prostate cancer treated with intensity modulated radiation therapy and androgen deprivation therapy: a case-matched analysis of pN1 and pN0 patients. Int J Radiat Oncol. 2016;96:323–32.

    Article  Google Scholar 

  79. Briganti A, et al. Combination of adjuvant hormonal and radiation therapy significantly prolongs survival of patients with pT2–4 pN + prostate cancer: results of a matched analysis. Eur Urol. 2011;59:832–40.

    Article  CAS  Google Scholar 

  80. Abdollah F, et al. Selecting the optimal candidate for adjuvant radiotherapy after radical prostatectomy for prostate cancer: a long-term survival analysis. Eur Urol. 2013;63:998–1008.

    Article  Google Scholar 

  81. Touijer KA, et al. Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: a comparative analysis of different postoperative management strategies. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.09.027.

  82. Mano R, Eastham J, Yossepowitch O. The very-high-risk prostate cancer: a contemporary update. Prostate Cancer Prostatic Dis. 2016;19:340–8.

    Article  CAS  Google Scholar 

  83. Moschini M, et al. Long-term utility of adjuvant hormonal and radiation therapy for patients with seminal vesicle invasion at radical prostatectomy. BJU Int. 2017;120:69–75.

    Article  CAS  Google Scholar 

  84. Tilki D, et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. BJU Int. 2017;119:717–23.

    Article  CAS  Google Scholar 

  85. Schröder FH, et al. Early versus delayed endocrine treatment of T2-T3 pN1-3 M0 prostate cancer without local treatment of the primary tumour: final results of European Organisation for the Research and Treatment of Cancer protocol 30846 after 13 years of follow-up (a randomised controlled trial). Eur Urol. 2009;55:14–22.

    Article  Google Scholar 

  86. James ND, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377:338–51.

    Article  CAS  Google Scholar 

  87. Fizazi K, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377:352–60.

    Article  CAS  Google Scholar 

  88. Gravis G, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14:149–58.

    Article  CAS  Google Scholar 

  89. Sweeney CJ, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46.

    Article  CAS  Google Scholar 

  90. James ND, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.

    Article  CAS  Google Scholar 

  91. Gravis G, et al. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur Urol. 2016;70:256–62.

    Article  CAS  Google Scholar 

  92. Moschini M, et al. Outcomes for patients with clinical lymphadenopathy treated with radical prostatectomy. Eur Urol. 2016;69:193–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jeffrey Karnes M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soligo, M., Sharma, V., Jeffrey Karnes, R. (2018). Radical Prostatectomy in the Metastatic Setting. In: Chang, S., Cookson, M. (eds) Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-78646-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78646-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78645-2

  • Online ISBN: 978-3-319-78646-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics