Skip to main content

Difference Methods for One-Dimensional PDE

  • Chapter
  • First Online:
Computational Methods in Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3839 Accesses

Abstract

Solving partial differential equations (PDE) is so crucial to mathematical physics that we devote three chapters to it. The solution methods largely depend on the type of the PDE. The type of a general system of linear first-order equations

$$ A{{\varvec{v}}}_x + B{{\varvec{v}}}_y = {{\varvec{c}}} \>, $$

where \({{\varvec{v}}}=(v_1, v_2, \ldots , v_M)^\mathrm {T}\) is the solution vector, \({{\varvec{c}}}=(c_1, c_2, \ldots , c_M)^\mathrm {T}\) is the vector of inhomogeneous terms, and A and B are \(M\times M\) matrices, is determined by the zeros of the characteristic polynomial \(\rho (\lambda )=\det (A-\lambda B)\). The system is hyperbolic if \(\rho (\lambda )\) has precisely M distinct zeros, or if it has M real zeros and the system \((A-\lambda B){{\varvec{u}}}={{\varvec{0}}}\) possesses precisely M linearly independent solutions. The system is parabolic if \(\rho (\lambda )\) has M real zeros but \((A-\lambda B){{\varvec{u}}}={{\varvec{0}}}\) does not have M linearly independent solutions. The system without real zeros of \(\rho (\lambda )\) is elliptic. (The classification of systems with mixed real and complex zeros of \(\rho (\lambda )\) is more involved.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer Texts in Applied Mathematics, vol. 22 (Springer, Berlin, 1998)

    Google Scholar 

  2. D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods. Los Alamos Sci. 29, 188 (2005)

    Google Scholar 

  3. A. Tveito, R. Winther, Introduction to Partial Differential Equations, Springer Texts in Applied Mathematics, vol. 29 (Springer, Berlin, 2005)

    Google Scholar 

  4. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, Oxford, 2003)

    Google Scholar 

  5. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations, Springer Texts in Applied Mathematics, vol. 33 (Springer, Berlin, 1999)

    Google Scholar 

  6. E. Godlewski, P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws (Springer, Berlin, 1996)

    Book  Google Scholar 

  7. R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser Verlag, Basel, 1990)

    Book  Google Scholar 

  8. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Eisen, On the numerical analysis of a fourth order wave equation. SIAM J. Numer. Anal. 4, 457 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  10. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Philos. Mag. Ser. 5(39), 422 (1985)

    Google Scholar 

  11. B. Fornberg, G.B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. London Ser. A 289, 373 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. X. Lai, Q. Cao, Some finite difference methods for a kind of GKdV equations. Commun. Numer. Methods Eng. 23, 179 (2007)

    Article  MathSciNet  Google Scholar 

  13. Q. Cao, K. Djidjeli, W.G. Price, E.H. Twizell, Computational methods for some non-linear wave equations. J. Eng. Math. 35, 323 (1999)

    Article  MathSciNet  Google Scholar 

  14. K. Kormann, S. Holmgren, O. Karlsson, Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. J. Chem. Phys. 128, 184101 (2008); See also C. Lubich, in Quantum Simulations of Complex Many-Body Systems: from Theory to Algorithms, John von Neumann Institute for Computing, Jülich, NIC Series, ed. by J. Grotendorst, D. Marx, A. Muramatsu, vol. 10 (2002), p. 459

    Google Scholar 

  15. W. van Dijk, F.M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 75, 036707 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. T.N. Truong et al., A comparative study of time dependent quantum mechanical wave packet evolution methods. J. Chem. Phys. 96, 2077 (1992)

    Article  ADS  Google Scholar 

  17. X. Liu, P. Ding, Dynamic properties of cubic nonlinear Schrödinger equation with varying nonlinear parameter. J. Phys. A: Math. Gen. 37, 1589 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Širca .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Širca, S., Horvat, M. (2018). Difference Methods for One-Dimensional PDE. In: Computational Methods in Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-78619-3_9

Download citation

Publish with us

Policies and ethics