Clock Synthesizers

  • Jeffrey Prinzie
  • Michiel Steyaert
  • Paul Leroux
Part of the Analog Circuits and Signal Processing book series (ACSP)


Frequency synthesizers comprise an important range of circuits in many SoCs (Systems-on-Chips). A synthesizer will create a frequency based on a different reference clock. These clock synthesizers are used in digital systems to generate high speed clocks, based on a low frequency crystal oscillator. Synthesizers are further used to generate the local oscillator (LO) signal in RF communication systems to upconvert or downconvert the base-band or RF signal. Third, for a special range of circuits, called Clock-Data recovery (CDR) circuits, the frequency reference is a data-stream rather than a periodic clock. The circuit has to recover the clock signals from the serial communication data input.


Clock Synthesizer Reference Clock Phase Noise Bang-bang Phase Detector Charge Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 63.
    J. A. McNeill. Jitter in ring oscillators. IEEE Journal of Solid-State Circuits, 32(6):870–879, Jun 1997.Google Scholar
  2. 82.
    Bram De Muer and Michiel Steyaert. CMOS Fractional-N Synthesizers. Springer US, 2003.Google Scholar
  3. 83.
    J. W. Moon, K. C. Choi, and W. Y. Choi. A 0.4-v, 90 to 350-MHz PLL with an active loop-filter charge pump. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5):319–323, May 2014.Google Scholar
  4. 84.
    Behzad Razavi. RF Microelectronics (2Nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series). Prentice Hall Press, Upper Saddle River, NJ, USA, 2nd edition, 2011.Google Scholar
  5. 85.
    S. K. Garg and B. Singh. A novel design of an efficient low power phase frequency detector for delay locked loop. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pages 1–4, July 2016.Google Scholar
  6. 86.
    Behzad Razavi. Designing BangBang PLLs for Clock and Data Recovery in Serial Data Transmission Systems, pages 34–45. Wiley-IEEE Press, 2003.Google Scholar
  7. 87.
    Jri Lee, K. S. Kundert, and B. Razavi. Analysis and modeling of bang-bang clock and data recovery circuits. IEEE Journal of Solid-State Circuits, 39(9):1571–1580, Sept 2004.Google Scholar
  8. 88.
    C. Hangmann, I. Wüllner, C. Hedayat, and U. Hilleringmann. Modeling and characterization of CP-PLL phase noise in presence of dead zone. In 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), pages 349–352, June 2014.Google Scholar
  9. 89.
    A. Samarah and A. C. Carusone. Cycle-slipping pull-in range of bang-bang PLLs. In 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), pages 1–4, June 2015.Google Scholar
  10. 90.
    V. S. Sadeghi, H. Miar Naimi, and M. P. Kennedy. The role of charge pump mismatch in the generation of integer boundary spurs in fractional-n frequency synthesizers: Why worse can be better. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(12):862–866, Dec 2013.Google Scholar
  11. 91.
    H. Shao, K. Lin, B. Wang, C. Chen, F. Gao, F. Huang, and X. Wang. A high-performance charge pump with improved static and dynamic matching characteristic. In 2015 IEEE 11th International Conference on ASIC (ASICON), pages 1–4, Nov 2015.Google Scholar
  12. 92.
    C. Zhang, T. Au, and M. Syrzycki. A high performance NMOS-switch high swing cascode charge pump for phase-locked loops. In 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pages 554–557, Aug 2012.Google Scholar
  13. 93.
    J. Prinzie, J. Christiaensen, P. Moreira, M. Steyaert, and P. Leroux. A low noise clock generator for high-resolution time-to-digital convertors. Journal of Instrumentation, 11(02):C02038, 2016.Google Scholar
  14. 94.
    Y. S. Park, D. h. Kwon, K. C. Choi, and W. Y. Choi. Multi-band VCO PLL with continuously maintained optimum VCO control voltage. Electronics Letters, 50(12):857–859, June 2014.Google Scholar
  15. 95.
    A. Sheikholeslami. Source degeneration [circuit intuitions]. IEEE Solid-State Circuits Magazine, 6(3):5–6, Summer 2014.Google Scholar
  16. 96.
    A. Dyskin and I. Kallfass. Source degeneration as series-series feedback. In 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), pages 1–3, Nov 2015.Google Scholar
  17. 97.
    C. T. Charles and D. J. Allstot. A buffered charge pump with zero charge sharing. In 2008 IEEE International Symposium on Circuits and Systems, pages 2633–2636, May 2008.Google Scholar
  18. 98.
    K. Arshak, O. Abubaker, and E. Jafer. Improved charge pump for reduced clock feed through and charge sharing suppression. In Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, 2004., volume 1, pages 192–194, Nov 2004.Google Scholar
  19. 99.
    J. Luo, L. Zhang, L. Zhang, Y. Wang, and Z. Yu. Behavioral analysis and optimization of CMOS CML dividers for millimeter-wave applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(3):256–260, March 2015.Google Scholar
  20. 100.
    Lutz von Wangenheim. On the Barkhausen and Nyquist stability criteria. Analog Integrated Circuits and Signal Processing, 66(1):139–141, Jan 2011.Google Scholar
  21. 101.
    M. Tiebout. Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid-State Circuits, 36(7):1018–1024, Jul 2001.Google Scholar
  22. 102.
    D. Ham and A. Hajimiri. Concepts and methods in optimization of integrated LC VCOs. IEEE Journal of Solid-State Circuits, 36(6):896–909, Jun 2001.Google Scholar
  23. 103.
    Behzad Razavi. A Study of Phase Noise in CMOS Oscillators, pages 176–188. Wiley-IEEE Press, 2003.Google Scholar
  24. 104.
    S. Cui, B. Banerjee, and V. Acharya. A linearized current-controlled oscillator for ultra-low power wideband and cognitive radios. In 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pages 146–149, Aug 2012.Google Scholar
  25. 105.
    D. B. Leeson. A simple model of feedback oscillator noise spectrum. Proceedings of the IEEE, 54(2):329–330, Feb 1966.Google Scholar
  26. 106.
    A. A. Abidi. Phase noise and jitter in CMOS ring oscillators. IEEE Journal of Solid-State Circuits, 41(8):1803–1816, Aug 2006.Google Scholar
  27. 107.
    J. Craninckx and M. Steyaert. Low-noise voltage-controlled oscillators using enhanced LC-tanks. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(12):794–804, Dec 1995.Google Scholar
  28. 108.
    A. Hajimiri and T. H. Lee. Design issues in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34(5):717–724, May 1999.Google Scholar
  29. 109.
    A. Hajimiri and T. H. Lee. A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2):179–194, Feb 1998.Google Scholar
  30. 111.
    A. Hajimiri, S. Limotyrakis, and T. H. Lee. Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits, 34(6):790–804, Jun 1999.Google Scholar
  31. 112.
    K. Kundert. Predicting the phase noise and jitter of PLL-based frequency synthesizers :
  32. 113.
    Adem Aktas and Mohammed Ismail. PLL Phase Noise Analysis, pages 21–40. Springer US, Boston, MA, 2004.Google Scholar
  33. 114.
    J. Phillips and K. Kundert. An introduction to cyclostationary noise.
  34. 115.
    X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta. Jitter analysis and a benchmarking figure-of-merit for phase-locked loops. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(2):117–121, Feb 2009.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeffrey Prinzie
    • 1
  • Michiel Steyaert
    • 2
  • Paul Leroux
    • 1
  1. 1.KU LeuvenGeelBelgium
  2. 2.KU LeuvenHeverleeBelgium

Personalised recommendations