Radiation Effects in CMOS Technology
Chapter
First Online:
- 2 Citations
- 827 Downloads
Abstract
This chapter will introduce the radiation effects that are encountered in modern CMOS technologies that have been used in this work. A summary of the effects and the potential problems will be discussed.
References
- 1.Michael G. Stabin, editor. Interaction of Radiation with Matter. Springer New York, New York, NY, 2007.Google Scholar
- 2.Brian R. Martin. Nuclear and Particle Physics: An Introduction, 2nd Edition. Wiley, 2009.Google Scholar
- 3.Ervin B. Podgorsak. Radiation Physics for Medical Physicists. Springer, 2010.Google Scholar
- 4.Friedel Weinert Daniel Greenberger, Klaus Hentschel. Compendium of Quantum Physics. Springer, 2009.Google Scholar
- 5.James E. Martin. Physics for Radiation Protection: A Handbook, Second Edition. Wiley, 2006.Google Scholar
- 6.R. C. Lacoe. Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Transactions on Nuclear Science, 55(4):1903–1925, Aug 2008.CrossRefGoogle Scholar
- 7.J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois. Radiation effects in MOS oxides. IEEE Transactions on Nuclear Science, 55(4):1833–1853, Aug 2008.CrossRefGoogle Scholar
- 8.R. C. Lacoe, J. V. Osborn, R. Koga, S. Brown, and D. C. Mayer. Application of hardness-by-design methodology to radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear Science, 47(6):2334–2341, Dec 2000.CrossRefGoogle Scholar
- 9.H. J. Barnaby. Total-ionizing-dose effects in modern CMOS technologies. IEEE Transactions on Nuclear Science, 53(6):3103–3121, Dec 2006.Google Scholar
- 10.N. S. Saks, D. B. Brown, and R. W. Rendell. Effects of switched gate bias on radiation-induced interface trap formation [MOS transistors]. IEEE Transactions on Nuclear Science, 38(6):1130–1139, Dec 1991.CrossRefGoogle Scholar
- 11.S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides. Effects of hydrogen motion on interface trap formation and annealing. IEEE Transactions on Nuclear Science, 51(6):3158–3165, Dec 2004.CrossRefGoogle Scholar
- 12.Kwok K. Ng Simon M. Sze. Physics of Semiconductor Devices, 3rd Edition. Wiley, 2006.Google Scholar
- 13.L. Ratti, L. Gaioni, M. Manghisoni, G. Traversi, and D. Pantano. Investigating degradation mechanisms in 130 nm and 90 nm commercial CMOS technologies exposed to up to 100 mrad ionizing radiation dose. In 2007 9th European Conference on Radiation and Its Effects on Components and Systems, pages 1–9, Sept 2007.Google Scholar
- 14.S. Gerardin, M. Bagatin, D. Cornale, L. Ding, S. Mattiazzo, A. Paccagnella, F. Faccio, and S. Michelis. Enhancement of transistor-to-transistor variability due to total dose effects in 65-nm MOSFETs. IEEE Transactions on Nuclear Science, 62(6):2398–2403, Dec 2015.CrossRefGoogle Scholar
- 15.A. Scarpa, A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, and P. G. Fuochi. Ionizing radiation induced leakage current on ultra-thin gate oxides. IEEE Transactions on Nuclear Science, 44(6):1818–1825, Dec 1997.CrossRefGoogle Scholar
- 16.F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, and S. Gerardin. Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs. IEEE Transactions on Nuclear Science, 62(6):2933–2940, Dec 2015.CrossRefGoogle Scholar
- 17.F. Faccio and G. Cervelli. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Transactions on Nuclear Science, 52(6):2413–2420, Dec 2005.CrossRefGoogle Scholar
- 18.A. H. Johnston, R. T. Swimm, G. R. Allen, and T. F. Miyahira. Total dose effects in CMOS trench isolation regions. IEEE Transactions on Nuclear Science, 56(4):1941–1949, Aug 2009.CrossRefGoogle Scholar
- 19.Lihua Dai, Xiaonian Liu, Mengying Zhang, Leqing Zhang, Zhiyuan Hu, Dawei Bi, Zhengxuan Zhang, and Shichang Zou. Degradation induced by TID radiation and hot-carrier stress in 130-nm short channel PDSOI NMOSFETs. Microelectronics Reliability, 74:74–80, 2017.CrossRefGoogle Scholar
- 20.M. Silvestri, S. Gerardin, A. Paccagnella, and F. Faccio. Degradation induced by x-ray irradiation and channel hot carrier stresses in 130-nm NMOSFETs with enclosed layout. IEEE Transactions on Nuclear Science, 55(6):3216–3223, Dec 2008.CrossRefGoogle Scholar
- 21.M. Silvestri, S. Gerardin, A. Paccagnella, F. Faccio, and L. Gonella. Channel hot carrier stress on irradiated 130-nm NMOSFETs. IEEE Transactions on Nuclear Science, 55(4):1960–1967, Aug 2008.CrossRefGoogle Scholar
- 22.G. Anelli, M. Campbell, M. Delmastro, F. Faccio, S. Floria, A. Giraldo, E. Heijne, P. Jarron, K. Kloukinas, A. Marchioro, P. Moreira, and W. Snoeys. Radiation tolerant vlsi circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects. IEEE Transactions on Nuclear Science, 46(6):1690–1696, Dec 1999.CrossRefGoogle Scholar
- 23.W. J. Snoeys, T. A. P. Gutierrez, and G. Anelli. A new NMOS layout structure for radiation tolerance. IEEE Transactions on Nuclear Science, 49(4):1829–1833, Aug 2002.CrossRefGoogle Scholar
- 24.Miryala S. Kulis S. Christiansen J. Francisco R. Casas L.M.J., Ceresa1 D. and Gnani D. Characterization of radiation effects in 65nm digital circuits with the DRAD digital radiation test chip. In Topical workshop on electronics for Particle Physics (TWEPP),. IEEE, 26–30 Sept. 2016.Google Scholar
- 25.P. E. Dodd. Device simulation of charge collection and single-event upset. IEEE Transactions on Nuclear Science, 43(2):561–575, Apr 1996.CrossRefGoogle Scholar
- 26.D. A. Black, W. H. Robinson, I. Z. Wilcox, D. B. Limbrick, and J. D. Black. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization. IEEE Transactions on Nuclear Science, 62(4):1540–1549, Aug 2015.CrossRefGoogle Scholar
- 27.M. Mitrović, M. Hofbauer, B. Goll, K. Schneider-Hornstein, R. Swoboda, B. Steindl, K. O. Voss, and H. Zimmermann. Experimental investigation of single-event transient waveforms depending on transistor spacing and charge sharing in 65-nm CMOS. IEEE Transactions on Nuclear Science, 64(8):2136–2143, Aug 2017.Google Scholar
- 28.B. Narasimham, B. L. Bhuva, R. D. Schrimpf, L. W. Massengill, M. J. Gadlage, O. A. Amusan, W. T. Holman, A. F. Witulski, W. H. Robinson, J. D. Black, J. M. Benedetto, and P. H. Eaton. Characterization of digital single event transient pulse-widths in 130-nm and 90-nm CMOS technologies. IEEE Transactions on Nuclear Science, 54(6):2506–2511, Dec 2007.CrossRefGoogle Scholar
- 29.P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank. Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Transactions on Nuclear Science, 51(6):3278–3284, Dec 2004.CrossRefGoogle Scholar
- 30.P. E. Dodd and L. W. Massengill. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Transactions on Nuclear Science, 50(3):583–602, June 2003.CrossRefGoogle Scholar
- 31.R. García Alía, M. Brugger, S. Danzeca, V. Ferlet-Cavrois, C. Frost, R. Gaillard, J. Mekki, F. Saigné, A. Thornton, S. Uznanski, and F. Wrobel. SEL hardness assurance in a mixed radiation field. IEEE Transactions on Nuclear Science, 62(6):2555–2562, Dec 2015.Google Scholar
- 32.F. W. Sexton. Destructive single-event effects in semiconductor devices and ICs. IEEE Transactions on Nuclear Science, 50(3):603–621, June 2003.CrossRefGoogle Scholar
- 33.P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix. Current and future challenges in radiation effects on CMOS electronics. IEEE Transactions on Nuclear Science, 57(4): 1747–1763, Aug 2010.CrossRefGoogle Scholar
- 34.R. Terada and M. Watanabe. Error injection analysis for triple modular and penta-modular redundancies. In 2017 6th International Symposium on Next Generation Electronics (ISNE), pages 1–4, May 2017.Google Scholar
- 35.H. B. Wang, Y. Q. Li, L. Chen, L. X. Li, R. Liu, S. Baeg, N. Mahatme, B. L. Bhuva, S. J. Wen, R. Wong, and R. Fung. An SEU-tolerant dice latch design with feedback transistors. IEEE Transactions on Nuclear Science, 62(2):548–554, April 2015.CrossRefGoogle Scholar
- 36.J. E. Knudsen and L. T. Clark. An area and power efficient radiation hardened by design flip-flop. IEEE Transactions on Nuclear Science, 53(6):3392–3399, Dec 2006.CrossRefGoogle Scholar
- 37.S. Kulis. Single event effects mitigation with TMRG tool. Journal of Instrumentation, 12(01):C01082, 2017.CrossRefGoogle Scholar
- 38.R. W. Blaine, N. M. Atkinson, J. S. Kauppila, S. E. Armstrong, N. C. Hooten, T. D. Loveless, J. H. Warner, W. T. Holman, and L. W. Massengill. Differential charge cancellation (DCC) layout as an RHBD technique for bulk CMOS differential circuit design. IEEE Transactions on Nuclear Science, 59(6):2867–2871, Dec 2012.CrossRefGoogle Scholar
- 39.O. A. Amusan, A. F. Witulski, L. W. Massengill, B. L. Bhuva, P. R. Fleming, M. L. Alles, A. L. Sternberg, J. D. Black, and R. D. Schrimpf. Charge collection and charge sharing in a 130 nm CMOS technology. IEEE Transactions on Nuclear Science, 53(6):3253–3258, Dec 2006.CrossRefGoogle Scholar
- 40.J. S. Kauppila, A. L. Sternberg, M. L. Alles, A. M. Francis, J. Holmes, O. A. Amusan, and L. W. Massengill. A bias-dependent single-event compact model implemented into BSIM4 and a 90 nm CMOS process design kit. IEEE Transactions on Nuclear Science, 56(6):3152–3157, Dec 2009.CrossRefGoogle Scholar
- 41.J. Allison et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1):270–278, Feb 2006.Google Scholar
- 42.M. Raine, M. Gaillardin, P. Paillet, and O. Duhamel. Towards a generic representation of heavy ion tracks to be used in engineering see simulation tools. IEEE Transactions on Nuclear Science, 61(4):1791–1798, Aug 2014.CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018