VR-System ViPoS: VR System with Visual and Postural Stimulation Using HMDs for Assessment Cybersickness in Military Personnel

  • Sonia Cárdenas-Delgado
  • Mauricio Loachamín-Valencia
  • Manolo Paredes Calderón
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 94)

Abstract

Previous studies have suggested that cybersickness could occur among users that interact with simulators, HMDs, or 3D technology. In the military sphere, this also is affecting due to use of different simulators in which the personnel is being trained. This situation could limit the learning and performance during the training. In this work, we propose an approach to developing a VR-system with visual and postural stimulation. The objective is to assess the symptoms associated to cybersickness in military personnel and determine if these symptoms could be mitigated with previous training using two types of HMDs. Assessment methods will include two questionnaires (SSQ and PQ), the head tracking, and time task. Also, we will compare two experimental conditions (Walking-Condition and Sitting-Condition). Our work will contribute to the occupational safety and health of military personnel, and guarantee an effective training in the different simulators according to their missions by mitigation of incidents.

Keywords

Cybersickness Virtual reality Health Occupational safety Military applications Multidisciplinary projects Oculus Rift 

Notes

Acknowledgment

We wish to express our recognition to the students who participate in the development of this work; to Director of CICTE; to the members of the Armed Forces of Ecuador who collaborate as participants; and to the reviewers of this article.

References

  1. 1.
    Kennedy, R.S., Lilienthal, M.G., Berbaum, K.S., Baltzley, D.R., McCauley, M.E.: Simulator sickness in U.S. Navy flight simulators. Aviat. Space. Environ. Med. 60, 10–16 (1989)Google Scholar
  2. 2.
    Rogers, S.P., Asbury, C.N., Szoboszlay, Z.P.: Enhanced flight symbology for wide-field-of-view helmet-mounted displays. In: International Society for Optics and Photonics, AeroSense 2003, pp. 321–332 (2003).  https://doi.org/10.1117/12.487289
  3. 3.
    Stoffregen, T.A., Hove, P., Schmit, J., Bardy, B.G.: Voluntary and involuntary postural responses to imposed optic flow. Mot. Control - Champaign 10, 24–33 (2006)CrossRefGoogle Scholar
  4. 4.
    Rosser Jr., J.C., Lynch, P.J., Cuddihy, L., Gentile, D.A., Klonsky, J., Merrell, R.: The impact of video games on training surgeons in the 21st century. Arch. Surg. 142, 181–186 (2007)CrossRefGoogle Scholar
  5. 5.
    Barab, S.A., Gresalfi, M., Ingram-Goble, A.: Transformational play: using games to position person, content, and context. Educ. Res. 39, 525–536 (2010)CrossRefGoogle Scholar
  6. 6.
    Mayo, M.J.: Games for science and engineering education. Commun. ACM 50, 30–35 (2007)CrossRefGoogle Scholar
  7. 7.
    Rizzo, A.A., Schultheis, M., Kerns, K.A., Mateer, C.: Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 14, 207–239 (2004)CrossRefGoogle Scholar
  8. 8.
    Cárdenas-Delgado, S., Méndez-López, M., Juan, M.-C., Pérez-Hernández, E., Lluch, J., Vivó, R.: Using a virtual maze task to assess spatial shortterm memory in adults. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) - Volume 1: GRAPP, pp. 46–57 (2017)Google Scholar
  9. 9.
    Parsons, T.D., Courtney, C.G., Dawson, M.E., Rizzo, A.A., Arizmendi, B.J.: Visuospatial processing and learning effects in virtual reality based mental rotation and navigational tasks. LNCS, pp. 75–83 (2013)Google Scholar
  10. 10.
    de Silva, R.D.C., Albuquerque, S.G.C., de Muniz, A.V., Filho, P.P.R., Ribeiro, S., Pinheiro, P.R., Albuquerque, V.H.C.: Reducing the schizophrenia stigma: a new approach based on augmented reality. Comput. Intell. Neurosci. 2017 (2017)Google Scholar
  11. 11.
    Dong, X., Yoshida, K., Stoffregen, T.A.: Control of a virtual vehicle influences postural activity and motion sickness. J. Exp. Psychol. Appl. 17, 128–138 (2011)CrossRefGoogle Scholar
  12. 12.
    Merhi, O., Faugloire, E., Flanagan, M., Stoffregen, T.A.: Motion sickness, console video games, and head-mounted displays. J. Hum. Factors Ergon. Soc. 49, 920–934 (2007)CrossRefGoogle Scholar
  13. 13.
    Stoffregen, T.A., Yoshida, K., Villard, S., Scibora, L., Bardy, B.G.: Stance width influences postural stability and motion sickness. Ecol. Psychol. 22, 169–191 (2010)CrossRefGoogle Scholar
  14. 14.
    Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, Oxford, England (1975)Google Scholar
  15. 15.
    Howarth, P.A.: Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review. Ophthalmic Physiol. Opt. 31, 111–122 (2011)CrossRefGoogle Scholar
  16. 16.
    Johnson, D.M.: Introduction to and review of simulator sickness research. Research Report 1832. Soc. Sci. (2005)Google Scholar
  17. 17.
    Maino, D.M., Chase, C., October, C.C.: Asthenopia: a technology induced visual impairment. Rev. Optom. Suppl. 2, 28–35 (2011)Google Scholar
  18. 18.
    Maino, D.M.: You can help your patients see 3-D!: 3-D is not just hype. It can help you diagnose binocular vision disorders and build your practice. You can even help patient overcome their problems with 3-D viewing. Rev. Optom. 148, 54–63 (2011)Google Scholar
  19. 19.
    Solimini, A.G., Mannocci, A., Di Thiene, D., La Torre, G.: A survey of visually induced symptoms and associated factors in spectators of three dimensional stereoscopic movies. BMC Public Health 12, 779 (2012)CrossRefGoogle Scholar
  20. 20.
    Ungs, T.J.: Simulator induced syndrome in Coast Guard aviators. Aviat. Space Environ. Med. 59, 267–272 (1988)Google Scholar
  21. 21.
    Blok, R.: Simulator sickness in the US Army UH-60A Blackhawk flight simulator. Mil. Med. 157, 109–111 (1992)CrossRefGoogle Scholar
  22. 22.
    Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3, 195–240 (1991)CrossRefGoogle Scholar
  23. 23.
    Cobb, S.V.G., Nichols, S., Ramsey, A., Wilson, J.R.: Virtual reality-induced symptoms and effects (VRISE). Presence Teleoperators Virtual Environ. 8, 169–186 (1999)CrossRefGoogle Scholar
  24. 24.
    Kolasinski, E.M.: Simulator sickness in virtual environments (1995)Google Scholar
  25. 25.
    LaViola, J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000)CrossRefGoogle Scholar
  26. 26.
    Kolasinski, E.M., Gilson, R.D.: Ataxia following exposure to a virtual environment. Aviat. Space Environ. Med. 70, 264–269 (1999)Google Scholar
  27. 27.
    Bos, J.E.: Nuancing the relationship between motion sickness and postural stability. Displays 32, 189–193 (2011)CrossRefGoogle Scholar
  28. 28.
    Villard, S.J., Flanagan, M.B., Albanese, G.M., Stoffregen, T.A.: Postural instability and motion sickness in a virtual moving room. Hum. Factors 50, 332–345 (2008)CrossRefGoogle Scholar
  29. 29.
    Drexler, J.M.: Identification of system design features that affect sickness in virtual environments (2006)Google Scholar
  30. 30.
    Kennedy, R.S., Lane, N.E.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  31. 31.
    McCauley, M.E., Royal, J.W., Wylie, C.D., OHanlon, J.F., Mackie, R.R.: Motion sickness incidence: exploratory studies of habituation, pitch and roll, and the refinement of a mathematical model (1976)Google Scholar
  32. 32.
    Benson, A.J.: Motion sickness. In: Encyclopaedia of Occupational Health and Safety, pp. 12–14. International Labour Organization, Geneva (1998)Google Scholar
  33. 33.
    Dobie, T.G., May, J.G.: Cognitive-behavioral management of motion sickness. Aviat. Space Environ. Med. 65, C1–C2 (1994)Google Scholar
  34. 34.
    Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516 (1998)CrossRefGoogle Scholar
  35. 35.
    Golding, J.F.: Motion sickness susceptibility. Auton. Neurosci. Basic Clin. 129, 67–76 (2006)CrossRefGoogle Scholar
  36. 36.
    Bos, J.E., Damala, D., Lewis, C., Ganguly, A., Turan, O.: Susceptibility to seasickness. Ergonomics 50, 890–901 (2007)CrossRefGoogle Scholar
  37. 37.
    Regan, E.C., Price, K.R.: The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat. Space Environ. Med. 65(6), 527–530 (1994)Google Scholar
  38. 38.
    Stanney, K.M., Salvendy, G., Deisinger, J., DiZio, P., Ellis, S., Ellison, J., Fogleman, G., Gallimore, J., Singer, M., Hettinger, L., Kennedy, R., Lackner, J., Lawson, B., Maida, J., Mead, A., Mon-Williams, M., Newman, D., Piantanida, T., Reeves, L., Riedel, O., Stoffregen, T., Wann, J., Welch, R., Wilson, J., Witmer, B.: Aftereffects and sense of presence in virtual environments: formulation of a research and development agenda. Int. J. Hum. Comput. Interact. 10, 135–187 (1998)CrossRefGoogle Scholar
  39. 39.
    Davis, S., Nesbitt, K., Nalivaiko, E.: Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In: Proceedings of 11th Australasian Conference on Interactive Entertainment (IE 2015), vol. 167, pp. 3–14 (2015)Google Scholar
  40. 40.
    Van Emmerik, M.L., De Vries, S.C., Bos, J.E.: Internal and external fields of view affect cybersickness. Displays 32, 169–174 (2011)CrossRefGoogle Scholar
  41. 41.
    Kennedy, R.S., Drexler, J., Kennedy, R.C.: Research in visually induced motion sickness. Appl. Ergon. 41, 494–503 (2010)CrossRefGoogle Scholar
  42. 42.
    Diels, C., Howarth, P.A.: Visually induced motion sickness: single-versus dual-axis motion. Displays 32, 175–180 (2011)CrossRefGoogle Scholar
  43. 43.
    Diels, C.: Visually induced motion sickness (2008)Google Scholar
  44. 44.
    Solimini, A.G.: Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS One 8, e56160 (2013)CrossRefGoogle Scholar
  45. 45.
    Naqvi, S.A.A., Badruddin, N., Malik, A.S., Hazabbah, W., Abdullah, B.: Does 3D produce more symptoms of visually induced motion sickness? In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6405–6408. IEEE (2013)Google Scholar
  46. 46.
    Kuze, J., Ukai, K.: Subjective evaluation of visual fatigue caused by motion images. Displays 29, 159–166 (2008)CrossRefGoogle Scholar
  47. 47.
    Llorach, G., Evans, A., Agenjo, J., Blat, J.: Position estimation with a low-cost inertial measurement unit. In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4. IEEE (2014)Google Scholar
  48. 48.
    Llorach, G., Evans, A., Blat, J.: Simulator sickness and presence using HMDs. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology - VRST 2014, pp. 137–140. ACM Press, New York (2014)Google Scholar
  49. 49.
    Army Medical Department, US: Motion Sickness. Medical Aspects of Harsh Environments (2002)Google Scholar
  50. 50.
    Lawther, A., Griffin, M.J.: A survey of the occurrence of motion sickness amongst passengers at sea. Aviat. Space Environ. Med. 59, 399–406 (1988)Google Scholar
  51. 51.
    Chan, G., Moochhala, S.M., Zhao, B., Wl, Y., Wong, J.: A comparison of motion sickness prevalence between seafarers and non-seafarers onboard naval platforms. Int. Marit. Health 57, 56–65 (2006)Google Scholar
  52. 52.
    Turner, M., Griffin, M.J.: Motion sickness in public road transport: passenger behavior and susceptibility. Ergonomics 42, 444–461 (1999)CrossRefGoogle Scholar
  53. 53.
    Stevens, S.C., Parsons, M.G.: Effects of motion at sea on crew performance: a survey. Mar. Technol. 39, 29–47 (2002)Google Scholar
  54. 54.
    Kim, D.H., Parker, D.E., Park, M.Y.: A New Procedure for Measuring Simulator Sickness the RSSQ. Human Interface Technology Laboratory, University of Washington (2004)Google Scholar
  55. 55.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ. 7, 225–240 (1998)CrossRefGoogle Scholar
  56. 56.
    Ames, S.L., Wolffsohn, J.S., McBrien, N.A.: The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom. Vis. Sci. 82, 168–176 (2005)CrossRefGoogle Scholar
  57. 57.
    Gamberini, L.: Virtual reality as a new research tool for the study of human memory. Cyberpsychol. Behav. 3, 337–342 (2004)CrossRefGoogle Scholar
  58. 58.
    Ku, J., Cho, W., Kim, J.-J., Peled, A., Wiederhold, B.K., Wiederhold, M.D., Kim, I.Y., Lee, J.H., Kim, S.I.: A virtual environment for invetigating schizophrenic patients characteristics: assessment of cognitive and navigation ability. Cyberpsychol. Behav. 6, 397–404 (2003)CrossRefGoogle Scholar
  59. 59.
    Elkind, J.S., Rubin, E., Rosenthal, S., Skoff, B., Prather, P.: A simulated reality scenario compared with the computerized Wisconsin card sorting test: an analysis of preliminary results. Cyberpsychol. Behav. 4, 489–496 (2004)CrossRefGoogle Scholar
  60. 60.
    Krueger, W.W.: Method to mitigate Nystagmus and motion sickness with head worn visual display during vestibular stimulation. J. Otolaryngol. Res. 7 (2017)Google Scholar
  61. 61.
    Onuh, S.O., Yusuf, Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J. Intell. Manuf. 10, 301–311 (1999)CrossRefGoogle Scholar
  62. 62.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 80(220), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, pp. 187–210 (2005)Google Scholar
  64. 64.
    Muhanna, M.A.: Virtual reality and the CAVE: taxonomy, interaction challenges and research directions (2015)Google Scholar
  65. 65.
    Antonov, M., Mitchell, N., Reisse, A., Cooper, L., LaValle, S., Katsev, M.: SDK Overview Version 0.2.5. Oculus VR, pp. 1–48 (2013)Google Scholar
  66. 66.
    Kennedy, R.S., Drexler, J.M., Compton, D.E., Stanney, K.M., Lanham, D.S., Harm, D.L.: Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences. In: Virtual and Adaptive Environments Applications Implications and Human Performance Issues, pp. 247–278 (2003)Google Scholar
  67. 67.
    Stanney, K.M., Hale, K.S., Nahmens, I., Kennedy, R.S.: What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Hum. Factors 45, 504–520 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sonia Cárdenas-Delgado
    • 1
  • Mauricio Loachamín-Valencia
    • 1
  • Manolo Paredes Calderón
    • 1
  1. 1.Departamento de Ciencias de la Computación, Centro de Investigación Científica y Tecnológica del Ejército - CICTEUniversidad de las Fuerzas Armadas - ESPESangolquíEcuador

Personalised recommendations