Statistical Study to Determine the Sample Size to Define a Propagation Model Adjusted to the Equatorial Jungle Environment: A Proposal to Optimize Telecommunications Resource I

  • V. Stephany Cevallos
  • C. Manolo Paredes
  • B. Federico Rodas
  • Rolando Reyes
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 94)

Abstract

This work shows a methodology to determine the sample size required to define a propagation model adjusted to a specific and uncharacterized jungle region, based on the Longley Rice (L-R) propagation model. The analysis is performed in the HF frequency band and using high performance military tactical communication equipment. Initially, a simulation of the telecommunications system to be implemented were developed using the Radio Mobile platform. Subsequently, through the field measurements done insitu, we estimated the interval of confidence to get an accurate model and the data size to get such interval. The research includes a set of meteorological measurements to validate and characterize the environment under which the optimization is going to be applied. The results obtained yields a set of protocols for determining propagation models to be used on voice, video and data transmission in hostile and uncharacterized areas.

References

  1. 1.
    Salous, S.: Radio Propagation Measurement and Channel Modelling. Durham University, United Kingdom, Wiley (2013)Google Scholar
  2. 2.
    Ying, X., Cheng, X.: Propagation Channel, Characterization Parameter Estimation and Modelling Wireless Communication. Wiley, Singapore (2016)Google Scholar
  3. 3.
    Rico, M., Contreras, J., Diana, C., Urrutia, S.J., Enrique, A.: Interferencias en sistemas de radiodifusión en zonas de frontera colombiana. Ingenium Revista de la facultad de ingenierı́a 15(30), 50 (2014)CrossRefGoogle Scholar
  4. 4.
    Pérez, N., Herrera, J., Uzcátegui, R., Peña, J.: Modelo de Propagación en las ciudades de Mérida (Venezuela) y Cúcuta (Colombia) Para Redes WLAN, Operando En 2.4 GHz, En Ambientes Exteriores. Inicio 16(62), 54–64 (2012)Google Scholar
  5. 5.
    Ballesteros, L., Peraza, D., Vaca, H.: Model study of spread in the environment of the University Distrital Francisco Jose de Caldas Luis. Rev. Vis. Electr. 4(2), 77–87 (2010)Google Scholar
  6. 6.
    Phillips, C., Sicker, D., Grunwald, D.: The Stability of The Longley- Rice Irregular Terrain Model for Typical Problems (2011)Google Scholar
  7. 7.
    Rappapport, T.: Wireless Communications: Principles and Practice, pp. 529–551. Prentice Hall, Upper Saddle River (1996)Google Scholar
  8. 8.
    Buettrich, S.: Unidad 06: Cálculo de Radioenlace, pp. 1–22 (2007)Google Scholar
  9. 9.
    Blake, R.: Basic Electronic Comunication, 1st edn. West Group (1993)Google Scholar
  10. 10.
    Lind, D., Marchal, W., Wathen, S.: Statistical Techniques in Business and Economics. McGraw-Hill, New York (2012)Google Scholar
  11. 11.
    Pérez, C.: Informe sobre técnicas de muestreo estadı́stico. AlfaOMega, México DF (2000)Google Scholar
  12. 12.
    Webster, A.: Estadistica aplicada a los negocios, pp. 5–12 (2000)Google Scholar
  13. 13.
    Martı́nez-Salgado, C.: El muestreo en investigación cualitativa: prin- cipios básicos y algunas controversias. Ciencia e Saúde Coletiva 17(3), 613–619 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. Stephany Cevallos
    • 1
  • C. Manolo Paredes
    • 1
  • B. Federico Rodas
    • 1
  • Rolando Reyes
    • 1
  1. 1.Universidad de las Fuerzas Armadas, ESPESangolquíEcuador

Personalised recommendations