Advertisement

Data Link System Flight Tests for Unmanned Aerial Vehicles

  • Anibal Jara-Olmedo
  • Wilson Medina-Pazmiño
  • Eddie E. Galarza
  • Franklin M. Silva
  • Eddie D. Galarza
  • Cesar A. Naranjo
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 94)

Abstract

This document establishes the considered procedures for UAV - F communication system’s flight tests, considering the compliance with the requirements of international standards showing the results of applying those procedures. In the paper there is a description of the aircraft’s communications system as the starting point of analysis. The tests were done considering each of the airworthiness requirements of the communications system to establish the way for data gathering. It is also described the related procedures and test parameters which allow to develop a new system as described in the general methodology. The outcomes of this work demonstrated the system’s ability to extend the communication to the compliance of the USAR of the STANAG4701 standard of NATO, in order to establish procedures for validation and certification of an “in development” aircraft and to build communication over obstacles.

Keywords

Unmanned Aerial Vehicle Unmanned aerial systems Ground Control Station Ground Data Terminal Air Data Terminal Flight test 

References

  1. 1.
    Organización de Aviación Civil Internacional: Unmanned Aircraft Systems (UAS). https://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf. Accessed 20 Oct 2017
  2. 2.
    Dalamagkidis, K., Valavanis, K., Piegl, L.: On Integrating Unmanned Aircraft Systems into the National Airspace System: Issues, Challenges, Operational Restrictions, Certification, and Recommendations, 2nd edn, pp. 503–519. Springer, Munchen (2010)Google Scholar
  3. 3.
    Haddon, D., Whittaker, C.: UK-CAA policy for light UAV systems. UK Civil Aviation Authority, United Kingdom, pp. 79–86, May 2004Google Scholar
  4. 4.
    Austin, R.: Unmanned Aircraft Systems: UAVS Design, Development and Deployment, 1st edn, pp. 10–11. Wiley, Chichester (2010)CrossRefGoogle Scholar
  5. 5.
    Stansbury, R., Vyas, M., Wilson, T.: A survey of UAS technologies for command, control, and communication (C3). In: Unmanned Aircraft Systems, Netherlands, pp. 71–78, June 2008Google Scholar
  6. 6.
    Hirling, O., Holzapfel, F.: Applicability of Military UAS Airworthiness Regulations to Civil Fixed Wing Light UAS in Germany, p. 25. Bonn, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV (2012)Google Scholar
  7. 7.
    Jain, R., Templin, F.: Requirements, challenges and analysis of alternatives for wireless datalinks for unmanned aircraft systems. IEEE J. Sel. Areas Commun. 30(5), 852–860 (2012)CrossRefGoogle Scholar
  8. 8.
    How, J., Kuwata, Y., King, E.: Flight demonstrations of cooperative control for UAV teams, - AIAA 3rd, “Unmanned Unlimited”, Technical Conference, Workshop and Exhibit, Infotech@Aerospace Conferences Technical, pp. 505–513, September 2004Google Scholar
  9. 9.
    Haala, N., Cramer, M., Weimer, F., Trittler, M.: Performance Test on UAV-Based Photogrammetric Data Collection in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, Switzerland, pp. 1–6, September 2011Google Scholar
  10. 10.
    Edrich, M.: Ultra-lightweight synthetic aperture radar based on a 35 GHz FMCW sensor concept and online raw data transmission. IEE Proc. Radar Sonar Navig. 153(2), 129–134 (2006). GermanyCrossRefGoogle Scholar
  11. 11.
    Pinkney, F., Hampel, D., DiPierro, S.: Unmanned aerial vehicle (UAV) communications relay. In: Proceedings of the Milcom 96, McLean, VA, USA, pp. 47–51, October 1996Google Scholar
  12. 12.
    Cetin, S., Zagli, I.: Continuous airborne communication relay approach using unmanned aerial vehicles. J. Intell. Rob. Syst. 65(1–4), 549–562 (2012)CrossRefGoogle Scholar
  13. 13.
    STANAG 4671: Unmanned Aerial Vehicles Systems Airworthiness Requirements (USAR). NSA/0976, NATO Naval Armamental Group (2009)Google Scholar
  14. 14.
    NATO: RTO-AG-300-V27: Annex A-Typical Tactical Class EMC soft procedure. Annex A – Typical Tactical Class EMC Soft Procedure, NATO, April 2010Google Scholar
  15. 15.
    ICAO 2010: Annex 8 – Airworthiness of Aircraft. http://www.icao.int/secretariat/postalhistory/annex_8_airworthiness_of_aircraft.htm. Accessed 12 Nov 2017
  16. 16.
    Pontzer, A., Lower, M., Miller, J.: Unique aspects of flight testing unmanned aircraft systems (No. RTO-AG-300 AC/323 (SCI-105) TP/299), NATO Research and Technology Organization Neuilly-Sur-Seine (France), pp. 15–16, April 2010Google Scholar
  17. 17.
    Johnson E., Schrage D., Prasad, J., Vachtsevanos, G.: UAV flight test programs at Georgia Tech. In: Proceedings of the AIAA Unmanned Unlimited Technical Conference, Workshop, and Exhibit, pp. 1–13, September 2004Google Scholar
  18. 18.
    Williams, W., Harris, M.: The challenges of flight-testing unmanned air vehicles (Doctoral dissertation, Systems Engineering Society of Australia), Sidney Australia, October 2002Google Scholar
  19. 19.
    Cotting, M., Wolek, A., Murtha, J., Woolsey, C.: Developmental flight testing of the SPAARO UAV. In: 48th AIAA Aerospace Sciences M & E, Orlando, FL, pp. 103–118, October 2010Google Scholar
  20. 20.
    Medina-Pazmiño, W., Jara-Olmedo, A., Tasiguano-Pozo, C., Lavín, J.M.: Analysis and implementation of ETL system for unmanned aerial vehicles (UAV). In: International Conference on Information Theoretic Security, pp. 653–662. Springer, Cham, January 2018Google Scholar
  21. 21.
    Deng, D., Yuan, H.: UAV flight safety ground test and evaluation. In: IEEE AUTOTESTCON, New Harbord, USA, pp. 422–427, November 2015Google Scholar
  22. 22.
    Faughnan, M., Hourican, B., MacDonald, G., Srivastava, M., Wright, J., Haimes, Y., White, J.: Risk analysis of unmanned aerial vehicle hijacking and methods of its detection. In: Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, USA, pp. 145–150, April 2013Google Scholar
  23. 23.
    Stansbury, R., Wilson, T., Tanis, E.: A technology survey of emergency recovery and flight termination systems for UAS. In: Proceedings of AIAA Infotech@ Aerospace Conference and AIAA Unmanned, Unlimited Conference, Seattle, OR, pp. 2375–2382, April 2009Google Scholar
  24. 24.
    Charlesworth, P.: Simulating missions of a UAV with a communications payload. In: IEEE UKSim 15th International Conference on Computer Modelling and Simulation (UKSim), pp. 650–655, April 2013Google Scholar
  25. 25.
    Lum, C., Gauksheim, K., Kosel, T., McGeer, T.: Assessing and estimating risk of operating unmanned aerial systems in populated areas. In: 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, USA, pp. 1–13, September 2011Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anibal Jara-Olmedo
    • 1
    • 2
  • Wilson Medina-Pazmiño
    • 1
  • Eddie E. Galarza
    • 1
    • 2
  • Franklin M. Silva
    • 1
    • 2
  • Eddie D. Galarza
    • 1
    • 2
  • Cesar A. Naranjo
    • 2
  1. 1.Centro de Investigación y Desarrollo FAE (CIDFAE)AmbatoEcuador
  2. 2.Universidad de las Fuerzas Armadas - ESPESangolquíEcuador

Personalised recommendations