Skip to main content

Secure Number Theoretic Transform and Speed Record for Ring-LWE Encryption on Embedded Processors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10779))

Abstract

Compact implementations of the ring variant of the Learning with Errors (Ring-LWE) on the embedded processors have been actively studied due to potential quantum threats. Various Ring-LWE implementation works mainly focused on optimization techniques to reduce the execution timing and memory consumptions for high availability. For this reason, they failed to provide secure implementations against general side channel attacks, such as timing attack. In this paper, we present secure and fastest Ring-LWE encryption implementation on low-end 8-bit AVR processors. We targeted the most expensive operation, i.e. Number Theoretic Transform (NTT) based polynomial multiplication, to provide countermeasures against timing attacks and best performance among similar implementations till now. Our contributions for optimizations are concluded as follows: (1) we propose the Look-Up Table (LUT) based fast reduction techniques for speeding up the modular coefficient multiplication in regular fashion, (2) we use the modular addition and subtraction operations, which are performed in constant timing. With these optimization techniques, the proposed NTT implementation enhances the performance by 18.3–22% than previous works. Finally, our Ring-LWE encryption implementations require only 680,796 and 1,754,064 clock cycles for 128-bit and 256-bit security levels, respectively.

This research of Hwajeong Seo was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2014-0-00743) supervised by the IITP (Institute for Information & communications Technology Promotion). This work of Hyeokchan Kwon and Sokjoon Lee was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT). [B0717-16-0097, Development of V2X Service Integrated Security Technology for Autonomous Driving Vehicle]. This research of Taehwan Park and Howon Kim was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2012-0-00265, Development of high performance IoT device and Open Platform with Intelligent Software).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Two LUTs only require 1 KB (\(2^8 \times 2 + 2^8 \times 2\)) and the LUTs are stored in the ROM. Considering that AVR platforms support ROM size in 128, 256, and 384 KB, the ROM consumption of LUT is negligible.

References

  1. Sarmadi, S.B., Boorghany, A., Jalili, R.: On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards. Cryptology ePrint Archive, Report 2014/514 (2014). https://eprint.iacr.org/2014/514.pdf

  2. Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identification protocols on smart cards and microcontrollers. Cryptology ePrint Archive, Report 2014/078 (2014)

    Google Scholar 

  3. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software implementation of Ring-LWE encryption. In: 18th Design, Automation & Test in Europe Conference & Exhibition, DATE 2015 (2015)

    Google Scholar 

  4. Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: Efficient software implementation of Ring-LWE encryption on IoT processors. IEEE Trans. Comput. (2017)

    Google Scholar 

  5. Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou, L.: On emerging family of elliptic curves to secure internet of things: ECC comes of age. IEEE Trans. Dependable Secure Comput. 14(3), 237–248 (2017)

    Google Scholar 

  6. Liu, Z., Longa, P., Pereira, G., Reparaz, O., Seo, H.: FourQ on embedded devices with strong countermeasures against side-channel attacks. Technical report, Cryptology ePrint Archive, Report 2017/434 (2017). 28, 29

    Google Scholar 

  7. Liu, Z., Pöppelmann, T., Oder, T., Seo, H., Roy, S.S., Güneysu, T., Großschädl, J., Kim, H., Verbauwhede, I.: High-performance ideal lattice-based cryptography on 8-bit AVR microcontrollers. ACM Trans. Embed. Comput. Syst. (TECS) 16(4), 117 (2017)

    Google Scholar 

  8. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for sensor nodes. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 302–317. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02726-5_22

    Chapter  Google Scholar 

  9. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE Trans. Inf. Forensics Secur. 11(7), 1385–1397 (2016)

    Article  Google Scholar 

  10. Liu, Z., Seo, H., Hu, Z., Hunag, X., Großschädl, J.: Efficient implementation of ECDH key exchange for MSP430-based wireless sensor networks. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 145–153. ACM (2015)

    Google Scholar 

  11. Liu, Z., Seo, H., Roy, S.S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient Ring-LWE encryption on 8-Bit AVR processors. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_33

    Chapter  Google Scholar 

  12. Liu, Z., Seo, H., Xu, Q.: Performance evaluation of twisted edwards-form elliptic curve cryptography for wireless sensor nodes. Secur. Commun. Netw. 8(18), 3301–3310 (2015)

    Article  Google Scholar 

  13. Liu, Z., Weng, J., Hu, Z., Seo, H.: Efficient elliptic curve cryptography for embedded devices. ACM Trans. Embed. Comput. Syst. (TECS) 16(2), 53 (2016)

    Google Scholar 

  14. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. Cryptology ePrint Archive, Report 2012/230 (2012)

    Google Scholar 

  15. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based digital signatures on constrained devices. In: 51st Annual Design Automation Conference, DAC 2014 (2014)

    Google Scholar 

  16. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptography on 8-Bit ATxmega microcontrollers. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19

    Chapter  Google Scholar 

  17. Qiu, L., Liu, Z., Pereira, G.C., Seo, H.: Implementing RSA for sensor nodes in smart cities. Pers. Ubiquit. Comput. 21(5), 807–813 (2017)

    Article  Google Scholar 

  18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

    Google Scholar 

  19. Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and side channel secure discrete Gaussian sampling (2014)

    Google Scholar 

  20. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact Ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_21

    Google Scholar 

  21. Seo, H.: Faster (feat. ECC PMULL) over F2571. In: A Systems Approach to Cyber Security: Proceedings of the 2nd Singapore Cyber-Security R&D Conference (SG-CRC 2017), vol. 15, p. 97. IOS Press (2017)

    Google Scholar 

  22. Seo, H., Kim, H.: MoTE-ECC based encryption on MSP430. J. Inf. Commun. Converg. Eng. 15(3), 160–164 (2017)

    MathSciNet  Google Scholar 

  23. Seo, H., Liu, Z., Großschädl, J., Kim, H.: Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Secur. Commun. Netw. 9(18), 5401–5411 (2016)

    Article  Google Scholar 

  24. Seo, H., Liu, Z., Nogami, Y., Park, T., Choi, J., Zhou, L., Kim, H.: Faster ECC over \(\mathbb{F}_{2^{521}-1}\) (feat. NEON). In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 169–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_11

    Chapter  Google Scholar 

  25. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, November 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, H., Liu, Z., Park, T., Kwon, H., Lee, S., Kim, H. (2018). Secure Number Theoretic Transform and Speed Record for Ring-LWE Encryption on Embedded Processors. In: Kim, H., Kim, DC. (eds) Information Security and Cryptology – ICISC 2017. ICISC 2017. Lecture Notes in Computer Science(), vol 10779. Springer, Cham. https://doi.org/10.1007/978-3-319-78556-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78556-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78555-4

  • Online ISBN: 978-3-319-78556-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics