Skip to main content

Antimicrobial-Mediated Bacterial Suicide

  • Chapter
  • First Online:
Antimicrobial Resistance in the 21st Century

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

  • 1858 Accesses

Abstract

One way to restrict the emergence of new antibiotic resistance is to make antimicrobials more lethal. To achieve that, a better understanding of how antimicrobials kill pathogens is needed. In the last decade, the idea emerged that reactive oxygen species (ROS) play a role in the lethal action of diverse antimicrobials. Experimental support was obtained (1) by measuring the effects of antimicrobials on intracellular ROS accumulation using dyes that become fluorescent in the presence of ROS and (2) by altering antimicrobial lethality using mutations in genes known to protect from oxidative damage and by using chemicals expected to alter ROS levels. Moreover, an ROS-mediated death process, which is blocked by treatment with an ROS-mitigating agent, continues after removal of the original lethal stress that triggers the ROS cascade. Challenges to the idea that ROS contribute to antimicrobial lethality led to refinements and additional support. For example, a drop in ROS explains the paradoxical loss of killing seen at very high concentrations of quinolone antibacterials, and an increase in ROS accounts for most of thymineless death. A potential consequence of ROS-mediated antimicrobial action is reduced antimicrobial effectiveness when antioxidants are consumed as nutritional supplements during antimicrobial therapy. Another is novel cross-tolerance that has not been previously considered with combination therapies. Overall, the experimental observations fit well with the concept that bacteria respond to severe stress by building up ROS levels and self-destructing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwyer D, Collins J, Walker G. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol. 2015;55:9.1–9.20.

    Article  CAS  Google Scholar 

  2. Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014;21:1–6.

    Article  PubMed  CAS  Google Scholar 

  3. Zhao X, Hong Y, Drlica K. Moving forward with ROS involvement in antimicrobial lethality. J Antimicrob Chemother. 2015;70:639–42.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis K. Programmed death in bacteria. Microbiol Molecular Biol Rev. 2000;64:503–14.

    Article  CAS  Google Scholar 

  5. Craig WA. Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale C, Murakawa T, Ambrose P, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker; 2002. p. 1–22.

    Google Scholar 

  6. Craig W. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Miller C, Thomsen L, Gaggero C, Mosseri R, Ingmer H, Cohen S. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–31.

    Article  CAS  PubMed  Google Scholar 

  8. Malik M, Hoatam G, Chavda K, Kerns R, Drlica K. Novel approach for comparing quinolones for emergence of resistant mutants during quinolone exposure. Antimicrob Agents Chemother. 2010;54:149–56.

    Article  CAS  PubMed  Google Scholar 

  9. Cirz R, Romesberg F. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob Agents Chemother. 2006;50:220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis. 2001;33(Suppl 3):S147–S56.

    Article  CAS  PubMed  Google Scholar 

  11. Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.

    Article  PubMed  Google Scholar 

  12. Baym M, Lieberman T, Kelsic E, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui J, Liu Y, Wang R, Tong W, Drlica K, Zhao X. The mutant selection window demonstrated in rabbits infected with Staphylococcus aureus. J Infect Dis. 2006;194:1601–8.

    Article  PubMed  Google Scholar 

  14. Ni W, Song X, Cui J. Testing the mutant selection window hypothesis with Escherichia coli exposed to levofloxacin in a rabbit tissue cage infection model. Eur J Clin Microbiol Infect Dis. 2014;33:385–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Gu X, Li Y, Li X, Gu M, Zhang N, et al. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model. BMC Vet Res. 2014;10:297.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xiong M, Wu X, Ye X, Zhang L, Zeng S, Huang Z, et al. Relationship between cefquinome PK/PD parameters and emergence of resistance of Staphylococcus aureus in rabbit tissue-cage infection model. Front Microbiol. 2016;7:874.

    PubMed  PubMed Central  Google Scholar 

  17. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban N. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother. 2009;53:1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorsey-Oresto A, Lu T, Mosel M, Wang X, Salz T, Drlica K, et al. YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep. 2013;3:528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dwyer D, Belenky P, Yang J, MacDonald I, Martell J, Takahashi N, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111:E2100–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong Y, Li L, Luan G, Drlica K, Zhao X. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat Microbiol. 2017;(in press).

    Google Scholar 

  22. Burger R, Drlica K. Superoxide protects Escherichia coli from bleomycin mediated lethality. J Inorg Biochem. 2009;109:1273–7.

    Article  CAS  Google Scholar 

  23. Mosel M, Li L, Drlica K, Zhao X. Superoxide-mediated protection of Escherichia coli from antimicrobials. Antimicrob Agents Chemother. 2013;57:5755–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Imlay J. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339:1210–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kohanski M, Dwyer D, Hayete B, Lawrence C, Collins J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810.

    Article  CAS  PubMed  Google Scholar 

  26. Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado A, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science. 2013;340:1583–7.

    Article  CAS  PubMed  Google Scholar 

  27. Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990;87(16):6181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oethinger M, Podglajen I, Kern WV, Levy SB. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother. 1998;42(8):2089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). Antimicrob Agents Chemother. 2001;45(1):38–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother. 2006;50(3):949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goswami M, Mangoli SH, Jawali N. Effects of glutathione and ascorbic acid on streptomycin sensitivity of Escherichia coli. Antimicrob Agents Chemother. 2007;51(3):1119–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albesa I, Becerra MC, Battan PC, Paez PL. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun. 2004;317(2):605–9.

    Article  CAS  PubMed  Google Scholar 

  33. Becerra MC, Albesa I. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun. 2002;297(4):1003–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother. 2010;65:520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Howard BM, Pinney RJ, Smith JT. 4-quinolone bactericidal mechanisms. Arzneimittelforschung/Drug Res. 1993;43:1125–9.

    CAS  Google Scholar 

  36. Chen C-R, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 1996;258:627–37.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Malik M, Chan N, Drlica-Wagner A, Wang J-Y, Li X, et al. Lethal action of quinolones with a temperature-sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents Chemother. 2006;50:362–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother. 2007;51:28–34.

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Wang X, Drlica K, Zhao X. A toxin-antitoxin module in Bacillus subtiltis can both mitigate and amplify effects of lethal stress. PLoS One. 2011;6:e23909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li L, Hong Y, Luan G, Mosel M, Malik M, Drlica K, et al. Ribosomal elongation factor 4 promotes cell death associated with lethal stress. MBio. 2014;5:e01708.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pogliano J, Lynch A, Belin D, Lin E, Beckwith J. Regulation of Escherichia coli cell envelope proteins involved in protein folding anddegradation by the Cpx two-component system. Genes Dev. 1997;11:1169–82.

    Article  CAS  PubMed  Google Scholar 

  42. Raivio T, Silhavy T. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol. 1997;179:7724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kohanski M, Dwyer D, Wierzbowski J, Cottarel G, Collins J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135:679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raivio T, Silhavy T. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol. 2001;55:591–624.

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Vulic M, Keren I, Lewis K. Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother. 2012;56:4922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi S, Ueda K, Komano T. The effects of metal ions on the DNA damage induced by hydrogen peroxide. Agric Biol Chem. 1990;54:69–76.

    CAS  PubMed  Google Scholar 

  47. Grimsrud P, Xie H, Griffin T, Bernlohr D. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008;283:21837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Girotti A. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39:1529–42.

    Article  CAS  PubMed  Google Scholar 

  49. Foti J, Devadoss B, Winkler J, Collins J, Walker G. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012;336:315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keren I, Wu Y, Inocencio J, Mulcahy L, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339:1213–6.

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Liu X, Qu Y, Wang X, Li L, Zhao X. Inhibitors of reactive oxygen accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob Agents Chemother. 2012;56:6048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Imlay J. Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol. 2015;24:124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol. 2013;195:1869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Korshunov S, Imlay J. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol. 2006;188:6326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem. 1995;270(23):13681–7.

    Article  CAS  PubMed  Google Scholar 

  56. Messner K, Imlay J. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002;277:42563–71.

    Article  CAS  Google Scholar 

  57. Korshunov S, Imlay J. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol. 2010;75:1389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dwyer D, Kohanski M, Hayete B, Collins J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol. 2007;3:91. Epub.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Baek S, Li A, Sassetti C. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011;(5):e1001065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas V, Kinkead L, Janssen A, Schaeffer C, Woods K, Lindgren J, et al. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress. MBio. 2013;4:e00437–13.

    PubMed  Google Scholar 

  61. Davies B, Kohanski M, Simmons L, Winkler J, Collins J, Walker G. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell. 2009;36:845–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lobritz M, Belenky P, Porter C, Gutierrez A, Yang J, Schwarz E, et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci U S A. 2015;112:8173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meylan S, Porter C, Yang J, Belenky P, Gutierrez A, Lobritz M, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park D, Akhtar M, Ansari A, Landick R, Kiley P. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet. 2013;9:e1003839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Loui C, Chang A, Lu S. Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol. 2009;9:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lu S, Killoran P, Fang F, Riley L. The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun. 2002;70:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deponte M. Programmed cell death in protists. Biochim Biophys Acta. 2008;1783(7):1396–405.

    Article  CAS  PubMed  Google Scholar 

  68. Jimenez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, et al. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot. 2009;60(3):815–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bayles KW. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol. 2014;12(1):63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell. 2012;46(5):561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gautam S, Sharma A. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. Mol Microbiol. 2002;44(2):393–401.

    Article  CAS  PubMed  Google Scholar 

  72. Raju KK, Gautam S, Sharma A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J Bacteriol. 2006;188(15):5408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother. 1975;8:251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol. 2006;61:810–25.

    Article  CAS  PubMed  Google Scholar 

  75. Hanawalt P. A balanced perspective on unbalanced growth and thymineless death. Front Microbiol. 2015;6:504.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khodursky AGE, Hanawalt PC. Thymineless death lives on: new insights into a classic phenomenon. Annu Rev Microbiol. 2015;69:247–63.

    Article  CAS  PubMed  Google Scholar 

  77. Fonville N, Bates D, Hastings P, Hanawalt P, Rosenberg S. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 2010;6:e1000865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fonville N, Vaksman Z, DeNapoli J, Hastings P, Rosenberg S. Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD. Genetics. 2011;189:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sangurdekar D, Hamann B, Smirnov D, Srienc F, Hanawalt P, Khodursky A. Thymineless death is associated with loss of essential genetic information from the replication origin. Mol Microbiol. 2010;75:1455–67.

    Article  CAS  PubMed  Google Scholar 

  80. Kuong K, Kuzminov A. Disintegration of nascent replication bubbles during thymine starvation triggers RecA- and RecBCD-dependent replication origin destruction. J Biol Chem. 2012;287:23958–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stivala L, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, et al. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem. 2001;276:22586–94.

    Article  CAS  PubMed  Google Scholar 

  82. Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano M. Dietary supplement use by US adults: data from the National Health and nutrition examination survey, 1999–2000. Am J Epidemiol. 2004;160:339–49.

    Article  PubMed  Google Scholar 

  83. Marathe S, Kumar R, Ajitkumar P, Nagaraja V. DC. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J Antimicrob Chemother. 2013;68:139–52.

    Article  CAS  PubMed  Google Scholar 

  84. Aires V, Delmas D. Common pathways in health benefit properties of RSV in cardiovascular diseases, cancers and degenerative pathologies. Curr Pharmaceut Biotech. 2015;16:219–44.

    Article  CAS  Google Scholar 

  85. Granzotto A, Zatta P. Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci. 2014;6:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yang X, Li X, Ren J. From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anti Cancer Agents Med Chem. 2014;14:806–25.

    Article  CAS  Google Scholar 

  87. Liu Y, Zhou J, Qu Y, Yang X, Shi G, Wang X, et al. Resveratrol antagonizes antimicrobial lethality and stimulates ecovery of bacterial mutants. PLoS One. 2016;11:e0153023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Brauner A, Fridman O, Gefen O, Balaban N. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.

    Article  CAS  PubMed  Google Scholar 

  89. Fowler V, Sakoulas G, McIntyre L, Meka V, Arbeit R, Cabell C, et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis. 2004;190:1140–9.

    Article  CAS  PubMed  Google Scholar 

  90. Schweizer M, Furuno J, Sakoulas G, Johnson J, Harris A, Shardell M, et al. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrob Agents Chemother. 2011;55:1082–7.

    Article  CAS  PubMed  Google Scholar 

  91. Kumar K, J Chen, Drlica K, Shopsin B. Dysfunction of the agr virulence regulator modulates antimicrobial-mediated killing of Staphylococcus aureus. MBio. 2017;in press.

    Google Scholar 

  92. Pader V, Hakim S, Painter K, Wigneshweraraj S, Clarke T, Edwards A. Staphylococcus aureus Inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol. 2016;2:16194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following for critical comments on the manuscript: Marila Gennaro and Bo Shopsin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, Y., Drlica, K., Zhao, X. (2018). Antimicrobial-Mediated Bacterial Suicide. In: Fong, I., Shlaes, D., Drlica, K. (eds) Antimicrobial Resistance in the 21st Century. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-319-78538-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78538-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78537-0

  • Online ISBN: 978-3-319-78538-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics