Sticking (No-slip) Indentation of an Elastic Half-Space

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 91)


In this chapter, we study the axisymmetric problem of the so-called sticking (non-slipping) indentation of a transversely isotropic elastic half-space by means of an arbitrary indenter which produces a circular area of contact. Explicit formulas are given for self-similar indenters.


  1. 1.
    Borodich, F.M., Galanov, B.A., Keer, L.M., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 34–44 (2014)CrossRefGoogle Scholar
  2. 2.
    Borodich, F.M., Galanov, B.A., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J. Mech. Phys. Solids 68, 14–32 (2014)CrossRefGoogle Scholar
  3. 3.
    Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. Roy. Soc. Lond. Ser. A 460, 507–514 (2004)CrossRefGoogle Scholar
  4. 4.
    Borodich, F.M., Keer, L.M.: Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. Int. J. Solids Struct. 41, 2479–2499 (2004)CrossRefGoogle Scholar
  5. 5.
    Bulychev, S.I., Alekhin, V.P., Shorshorov, M.K., Ternovskii, A.P., Shnyrev, G.D.: Determination of Young’s modulus according to indentation diagram. Ind. Lab. 41, 1409–1412 (1975)Google Scholar
  6. 6.
    Derjaguin, B.: Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilchen. Kolloid Zeitschrift 69, 155–164 (1934)CrossRefGoogle Scholar
  7. 7.
    Fabrikant, V.I.: Four types of exact solution to the problem of an axisymmetric punch bonded to a transversely isotropic half-space. Int. J. Eng. Sci. 24, 785–801 (1986)CrossRefGoogle Scholar
  8. 8.
    Fabrikant, V.I.: Axisymmetric bonded punch problem: a complete solution. Ingenier-Archiv 60, 213–224 (1990)CrossRefGoogle Scholar
  9. 9.
    Galin, L.A.: Spatial contact problems of the theory of elasticity for punches of circular shape in planar projection. J. Appl. Math. Mech. (PMM) 10, 425–448 (1946). (in Russian)Google Scholar
  10. 10.
    Goodman, L.E.: Contact stress analysis of normally loaded rough spheres. J. Appl. Mech. 29(3), 515–522 (1962)CrossRefGoogle Scholar
  11. 11.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)CrossRefGoogle Scholar
  12. 12.
    Keer, L.M.: Mixed boundary-value problems for an elastic half-space. Proc. Camb. Philos. Soc. 63, 1379–1386 (1967)CrossRefGoogle Scholar
  13. 13.
    Love, A.E.H.: Boussinesq’s problem for a rigid cone. Quart. J. Math., Oxford Ser. 10, 161–175 (1939)Google Scholar
  14. 14.
    Mossakovskii, V.I.: The fundamental mixed boundary value problem of the theory of elasticity for a half-space with a circular line separating the boundary conditions. J. Appl. Math. Mech. (PMM) 18, 187–196 (1954)Google Scholar
  15. 15.
    Mossakovskii, V.I.: Compression of elastic bodies under conditions of adhesion (axisymmetric case). J. Appl. Math. Mech. 27, 630–643 (1963). (in Russian)CrossRefGoogle Scholar
  16. 16.
    Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613–617 (1992)CrossRefGoogle Scholar
  17. 17.
    Spence, D.A.: Self similar solutions to adhesive contact problems with incremental loading. Proc. Roy. Soc. Lond. Ser. A 305, 55–80 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Department of Mathematics, IMPACSAberystwyth UniversityAberystwythUK

Personalised recommendations