Advertisement

Surface Stretch of an Elastic Half-Space Under Indentation

  • Ivan Argatov
  • Gennady Mishuris
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 91)

Abstract

In this chapter, we consider the tangential displacement field induced at the surface of a transversely isotropic elastic half-space by axisymmetric normal loading, e.g., with the help of a rigid indenter. In particular, a new elastic constant, which is responsible for the so-called surface stretch is introduced. Explicit formulas for the surface stretch are given for canonical (paraboloidal, conical, and spherical) indenters and a flat-ended annular indenter.

References

  1. 1.
    Argatov, I.I.: Approximate solution of an axisymmetric contact problem with allowance for tangential displacements on the contact surface. J. Appl. Mech. Tech. Phys. 45, 118–123 (2004)CrossRefGoogle Scholar
  2. 2.
    Argatov, I., Mishuris, G.: Contact Mechanics of Articular Cartilage Layers: Asymptotic Models. Springer, Cham (2015)CrossRefGoogle Scholar
  3. 3.
    Brown, C.P., Oloyede, A., Moody, H.R., Crawford, R.W.: A novel approach to the development of benchmarking parameters for characterizing cartilage health. Connect. Tissue Res. 48, 52–61 (2007)CrossRefGoogle Scholar
  4. 4.
    Collins, W.D.: On the solution of some axisymmetric boundary value problems by means of integral equations. Proc. Edinb. Math. Soc. III(13), 235–246 (1963)CrossRefGoogle Scholar
  5. 5.
    Deich, E.G.: On an axially symmetrical contact problem for a non-plane die circular in plan. J. Appl. Math. Mech. 26, 1404–1409 (1962)CrossRefGoogle Scholar
  6. 6.
    Elliott, H.A.: Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Camb. Phil. Soc. 44, 522–533 (1948)CrossRefGoogle Scholar
  7. 7.
    Erdogan, F.: Stress distribution in bonded dissimilar materials containing circular or ring-shaped cavities. J. Appl. Mech. 32, 829–836 (1965)CrossRefGoogle Scholar
  8. 8.
    Fabrikant, V.I.: Elastic field around a circular punch. J. Appl. Mech. 55, 604–610 (1988)CrossRefGoogle Scholar
  9. 9.
    Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selection of New Results. Kluwer, Dordrecht (1989)Google Scholar
  10. 10.
    Gladwell, G.M.L., Gupta, O.P.: On the approximate solution of elastic contact problems for a circular annulus. J. Elast. 9, 335–348 (1979)CrossRefGoogle Scholar
  11. 11.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980)Google Scholar
  12. 12.
    Grinberg, G.A., Kuritsyn, V.N.: Diffraction of a plane electromagnetic wave by an ideally conducting plane ring and the electrostatic problem for such a ring. Sov. Phys. 6, 743–749 (1962)Google Scholar
  13. 13.
    Gubenko, V.S., Mossakovskii, V.I.: Pressure of an axially symmetric circular die on an elastic half-space. J. Appl. Math. Mech. 24, 477–486 (1960)CrossRefGoogle Scholar
  14. 14.
    Hanson, M.T., Puja, I.W.: Love’s circular patch problem revisited closed form solutions for transverse isotropy and shear loading. Q. Appl. Math. 54(2), 359–384 (1996)CrossRefGoogle Scholar
  15. 15.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)CrossRefGoogle Scholar
  16. 16.
    Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer Academic Publishing, Dordrecht (2003)Google Scholar
  17. 17.
    Love, A.E.H.: Boussinesq’s problem for a rigid cone. Quart. J. Math. Oxford Ser. 10, 161–175 (1939)Google Scholar
  18. 18.
    Rahman, M., Newaz, G.: Elastostatic surface displacements of a half-space reinforced by a thin film due to an axial ring load. Int. J. Eng. Sci. 35, 603–611 (1997)CrossRefGoogle Scholar
  19. 19.
    Shibuya, T., Koizumi, T., Nakahara, I.: An elastic contact problem for a half-space indented by a flat annular rigid stamp. Int. J. Eng. Sci. 12, 759–771 (1974)CrossRefGoogle Scholar
  20. 20.
    Sneddon, I.N.: Boussinesq’s problem for a rigid cone. Proc. Camb. Phil. Soc. 44, 492–507 (1948)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Department of Mathematics, IMPACSAberystwyth UniversityAberystwythUK

Personalised recommendations