Non-axisymmetric Frictionless Indentation of a Transversely Isotropic Elastic Half-Space

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 91)


In this chapter, we consider non-axisymmetric frictionless unilateral contact and develop a generalization of the BASh relation, which accounts for non-circular contact areas. An important case of non-axisymmetric contact is characterized by a class of self-similar indenters, for which we outline a similarity analysis by Borodich (J Appl Math Mech 47:519–521, 1983 [9]), (Sov Appl Mech 26:631–636, 1990 [10]), where special attention is paid to pyramidal indenters.


  1. 1.
    Argatov, I.: Frictionless and adhesive nanoindentation: asymptotic modeling of size effects. Mech. Mater. 42, 807–815 (2010)CrossRefGoogle Scholar
  2. 2.
    Argatov, I.I.: Electrical contact resistance, thermal contact conductance and elastic incremental stiffness for a cluster of microcontacts: asymptotic modelling. Quart. J. Mech. Appl. Math. 64, 1–24 (2011)CrossRefGoogle Scholar
  3. 3.
    Argatov, I.I., Dmitriev, N.N.: Fundamentals of the Theory of Elastic Discrete Contact [in Russian]. Polytechnics, St. Petersburg (2003).Google Scholar
  4. 4.
    Argatov, I., Heß, M., Pohrt, R., Popov, V.L.: The extension of the method of dimensionality reduction to non-compact and non-axisymmetric contacts. J. Appl. Math. Mech. (ZAMM) 96, 1144–1155 (2016)CrossRefGoogle Scholar
  5. 5.
    Barber, J.R.: Determining the contact area in elastic indentation problems. J. Strain Anal. 9, 230–232 (1974)CrossRefGoogle Scholar
  6. 6.
    Barber, J.R.: Bounds on the electrical resistance between contacting elastic rough bodies. Proc. Roy. Soc. (London). Ser. A. 459, 53–66 (2003)Google Scholar
  7. 7.
    Barber, J.R., Billings, D.A.: An approximate solution for the contact area and elastic compliance of a smooth punch of arbitrary shape. Int. J. Mech. Sci. 32, 991–997 (1990)CrossRefGoogle Scholar
  8. 8.
    Bilodeau, G.: Regular pyramid punch problem. ASME J. Appl. Mech. 59, 519–523 (1992)CrossRefGoogle Scholar
  9. 9.
    Borodich, F.M.: Similarity in the problem of contact between elastic bodies. J. Appl. Math. Mech. 47, 519–521 (1983)CrossRefGoogle Scholar
  10. 10.
    Borodich, F.M.: Solution of contact problems of elasticity theory for an anisotropic body by the method of similarity. Sov. Appl. Mech. 26, 631–636 (1990)CrossRefGoogle Scholar
  11. 11.
    Borodich, F.M.: The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach). Int. J. Solids Struct. 30, 1513–1526 (1993)CrossRefGoogle Scholar
  12. 12.
    Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRefGoogle Scholar
  13. 13.
    Bosakov, S.V.: Solving the contact problem for a rectangular die on an elastic foundation. Int. J. Appl. Mech. 39, 1188–1192 (2003)CrossRefGoogle Scholar
  14. 14.
    Bulychev, S.I., Alekhin, V.P., Shorshorov, MKh, Ternovskii, A.P., Shnyrev, G.D.: Determination of Young’s modulus according to indentation diagram. Ind. Lab. 41, 1409–1412 (1975)Google Scholar
  15. 15.
    Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)CrossRefGoogle Scholar
  16. 16.
    Efimov, A.B., Vorob’ev, V.N.: A contact problem in the theory of elasticity with a single controlling parameter. J. Eng. Phys. 23, 1583–1587 (1972)CrossRefGoogle Scholar
  17. 17.
    Fabrikant, V.I.: Flat punch of arbitrary shape on an elastic half-space. Int. J. Eng. Sci. 24, 1731–1740 (1986)CrossRefGoogle Scholar
  18. 18.
    Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2002)CrossRefGoogle Scholar
  19. 19.
    Galin, L.A.: In: Gladwell, G.M.L. (ed.) Contact Problems: The Legacy of L.A. Galin. Springer, Dordrecht (2008)Google Scholar
  20. 20.
    Giannakopoulos, A.E.: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids 54, 1305–1332 (2006)CrossRefGoogle Scholar
  21. 21.
    Hlavacek, I., Haslinger, J., Necas, J., Lovisek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988)CrossRefGoogle Scholar
  22. 22.
    Johnson, K.L.: Contact Mechanics. Cambridge Univ. Press, Cambridge, UK (1985)CrossRefGoogle Scholar
  23. 23.
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite element Methods. SIAM, Philadelphia (1988)CrossRefGoogle Scholar
  24. 24.
    King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657–1664 (1987)CrossRefGoogle Scholar
  25. 25.
    Kravchuk, A.S., Neittaanmaki, P.J.: Variational and Quasi-Variational Inequalities in Mechanics. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  26. 26.
    Love, A.E.H.: Boussinesq’s problem for a rigid cone. Quart. J. Math. Oxford Ser. 10, 161–175 (1939)Google Scholar
  27. 27.
    Mossakovskii, V.I.: Estimating displacements in spatial contact problems [in Russian]. J. Appl. Math. Mech. (PMM) 15, 635–636 (1951)Google Scholar
  28. 28.
    Mossakovskii, V.I.: Compression of elastic bodies under conditions of adhesion (axisymmetric case). J. Appl. Math. Mech. 27, 630–643 (1963)CrossRefGoogle Scholar
  29. 29.
    Murakami, Y., Tanaka, K., Itokazu, M., Shimamoto, A.: Elastic analysis of triangular pyramid indentation by the finite element method and its application to nano-indentation measurement of glasses. Philos. Mag. A 69, 1131–1153 (1994)CrossRefGoogle Scholar
  30. 30.
    Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613–617 (1992)CrossRefGoogle Scholar
  31. 31.
    Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton Univ. Press, Princeton, NJ (1951)Google Scholar
  32. 32.
    Shield, R.T.: Load-displacement relations for elastic bodies. J. Appl. Math. Phys. (ZAMP) 18, 682–693 (1967)CrossRefGoogle Scholar
  33. 33.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and Variational Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)Google Scholar
  34. 34.
    Shorshorov, MKh, Bulychev, S.I., Alekhin, V.P.: Work of plastic and elastic deformation during indenter indentation. Sov. Phys. Dokl. 26, 769–771 (1981)Google Scholar
  35. 35.
    Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18, 95–139 (1959)Google Scholar
  36. 36.
    Wolf, B.: Inference of mechanical properties from instrumented depth sensing indentation at tiny loads and indentation depths. Cryst. Res. Technol. 35, 377–399 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Department of Mathematics, IMPACSAberystwyth UniversityAberystwythUK

Personalised recommendations