Skip to main content

Indentation of a Poroelastic/Biphasic Half-Space

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 91))

Abstract

This chapter is devoted to indentation testing of liquid saturated materials, which, for the sake of simplicity, are assumed to be isotropic and undergoing small deformations. In particular, analytical solutions are presented for two types of indenters (cylindrical and paraboloidal) and for two kinds of loading protocols (creep and load-relaxation).

What you do in this world is a matter of no consequence. The question is what can you make people believe you have done.

Arthur Conan Doyle

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  2. Agbezuge, L.K., Deresiewicz, H.: On the indentation of a consolidating half-space. Isr. J. Technol. 12, 322–338 (1974)

    Google Scholar 

  3. Agbezuge, L.K., Deresiewicz, H.: Consolidation settlement of a circular footing. Isr. J. Technol. 13, 264–269 (1975)

    Google Scholar 

  4. Ateshian, G.A.: Mixture theory for modeling biological tissues: illustrations from articular cartilage. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol. 20. Springer, Cham, pp. 1–51 (2017)

    Google Scholar 

  5. Bargar, W.L., Nowinski, J.L.: The Hertz problem for rheological materials of a poroelastic class. Acta Mech. 20, 217–231 (1974)

    Article  Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  7. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  Google Scholar 

  8. Biot, M.A.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21, 597–620 (1972)

    Article  Google Scholar 

  9. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  10. Booker, J.R., Small, J.C.: The consolidation of a deep clay stratum subject to an impermeable axisymmetric surface loading. Comput. Geotech. 1(4), 245–261 (1985)

    Article  Google Scholar 

  11. Chen, S.L., Chen, L.Z., Zhang, L.M.: The axisymmetric consolidation of a semi-infinite transversely isotropic saturated soil. Int. J. Numer. Anal. Meth. Geomech. 29, 1249–1270 (2005)

    Article  Google Scholar 

  12. Cheng, A.H.-D.: Poroelasticity. Springer, Switzerland (2016)

    Book  Google Scholar 

  13. Chiarella, C., Booker, J.R.: The time-settlement behaviour of a rigid die resting on a deep clay layer. Int. J. Numer. Anal. Meth. Geomech. 8, 343–357 (1975)

    Google Scholar 

  14. De Josselin de Jong, G.: Application of stress functions to consolidation problems. In: Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, vol. 1, pp. 320–323 (1957)

    Google Scholar 

  15. Deresiewicz, H.: On the indentation of a consolidationg half-space II. Effect of Poisson’s ratio. Isr. J. Technol. 15, 89–97 (1976)

    Google Scholar 

  16. Deresiewicz, H.: Effects of restricted flow at the surface of saturated clay. J. Numer. Anal. Meth. Geomech. 3, 1–11 (1979)

    Article  Google Scholar 

  17. Detournay, E., Cheng, H.-D.A.: Fundamentals of poroelasticity. In: Hudson, J.A. (ed.) Comprehensive Rock Engineering: Principles, Practice and Projects, pp. 113–171. Pergamon, Oxford (1993)

    Google Scholar 

  18. Doi, M.: Gel dynamics. J. Phys. Soc. Jpn. 78(5), 052001, 19 p (2009)

    Google Scholar 

  19. Galli, M., Oyen, M.L.: Fast identification of poroelastic parameters from indentation tests. Comput. Model. Eng. Sci. (CMES) 48, 241–268 (2009)

    Google Scholar 

  20. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)

    Google Scholar 

  21. Hahn, H.G.: Elastizitätstheorie. Teubner, Stuttgart (1985)

    Book  Google Scholar 

  22. Heinrich, G., Desoyer, K.: Theorie dreidimensionaler setznugsvorgänge in Tonschichten. Ing. Arch. 30(4), 225–253 (1961)

    Article  Google Scholar 

  23. Hu, Y., Zhao, X., Vlassak, J.J., Suo, Z.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904, 3 p (2010)

    Google Scholar 

  24. Hui, C.-Y., Muralidharan, V.: Gel mechanics: a comparison of the theories of Biot and Tanaka, Hocker, and Benedek. J. Chem. Phys. 123, 154905, 7 p (2005)

    Google Scholar 

  25. Kim, J., Selvadurai, A.P.S.: A note on the consolidation settlement of a rigid circular foundation on a poroelastic halfspace. Int. J. Numer. Anal. Meth. Geomech. (2016). https://doi.org/10.1002/nag.2519

  26. Lai, Y., Hu, Y.: Unified solution of poroelastic oscillation indentation on gels for spherical, conical and cylindrical indenters. Soft Matter 13, 852–861 (2017)

    Article  Google Scholar 

  27. Lai, W.M., Mow, V.C.: Drug-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123 (1980)

    Article  Google Scholar 

  28. Lin, Y.-Y., Hu, B.-W.: Load Relaxation of a flat rigid circular indenter on a gel half space. J. Non. Cryst. Solids 352, 4034–4040 (2006)

    Article  Google Scholar 

  29. Mak, A.F., Lai, W.M., Mow, V.C.: Biphasic indentation of articular cartilage. Part I: theoretical analysis. J. Biomech. 20, 703–714 (1987)

    Article  Google Scholar 

  30. Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp. Porous Med. 70, 427–450 (2007)

    Article  Google Scholar 

  31. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  32. McNamee, J., Gibson, R.E.: Displacement functions and linear transforms applied to diffusion through porous elastic media. Q. J. Mech. Appl. Math. 13, 98–111 (1960)

    Article  Google Scholar 

  33. McNamee, J., Gibson, R.E.: Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Q. J. Mech. Appl. Math. 13, 210–227 (1960)

    Article  Google Scholar 

  34. Nowinski, J.L.: Bielayev’s point in poroelastic bodies in contact. Int. J. Mech. Sci. 15, 145–155 (1973)

    Article  Google Scholar 

  35. Oyen, M.L.: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307–1314 (2008)

    Article  Google Scholar 

  36. Pe\(\tilde{\rm n}\)a, E., Del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Methods. Eng. 14, 47–91 (2007)

    Google Scholar 

  37. Rice, J.R., Cleary, M.P.: Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14, 227–241 (1976)

    Article  Google Scholar 

  38. Scherer, G.W.: Drying gels VIII. Revision and review. J. Non-Cryst. Solids 109, 171–182 (1989)

    Article  Google Scholar 

  39. Scherer, G.W.: Measurement of permeability I. Theory J. Non-Cryst. Solids 113, 107–118 (1989)

    Article  Google Scholar 

  40. Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)

    Article  Google Scholar 

  41. Verruijt, A.: Displacement functions in the theory of consolidation or in thermoelasticity. J. Appl. Math. Phys. (ZAMP) 22, 891–898 (1971)

    Article  Google Scholar 

  42. Yue, Z.Q., Selvadurai, A.P.S.: Contact problem for saturated poroelastic solid. J. Eng. Mech. ASCE 121(4), 502–512 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Argatov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Argatov, I., Mishuris, G. (2018). Indentation of a Poroelastic/Biphasic Half-Space. In: Indentation Testing of Biological Materials. Advanced Structured Materials, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-78533-2_11

Download citation

Publish with us

Policies and ethics