Variations of Stable Isotope Ratios in Nature

  • Jochen Hoefs
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)


Extraterrestrial materials consist of samples from the moon, Mars and a variety of smaller bodies such as asteroids and comets. These planetary samples have been used to deduce the evolution of our solar system. A major difference between extraterrestrial and terrestrial materials is the existence of primordial isotopic heterogeneities in the early solar system. These heterogeneities are not observed on Earth, because they have become obliterated during high-temperature processes over geologic time.


  1. Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. PNAS 47:623CrossRefGoogle Scholar
  2. Abrajano TA, Sturchio NB, Bohlke JH, Lyon GJ, Poreda RJ, Stevens MJ (1988) Methane— hydrogen gas seeps Zambales ophiolite, Phillippines: deep or shallow origin. Chem Geol 71:211–222CrossRefGoogle Scholar
  3. Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta 72:5351–5360CrossRefGoogle Scholar
  4. Agrinier P, Hekinian R, Bideau D, Javoy M (1995) O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the hess deep near the Galapagos triple junction. Earth Planet Sci Lett 136:183–196CrossRefGoogle Scholar
  5. Aharon P, Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64:233–246CrossRefGoogle Scholar
  6. Aharon P, Fu B (2003) Sulfur and oxygen isotopes of coeval sulphate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol 195:201–218CrossRefGoogle Scholar
  7. Alexander CM, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403CrossRefGoogle Scholar
  8. Alexander CM, Newsome SD, Fogel ML, Nittler LR, Busemann H, Cody GR (2010) Deuterium enrichments in chondritic macromolecular material—implications for the origin and evolution of organics, water and asteroids. Geochim Cosmochim Acta 74:4417–4437CrossRefGoogle Scholar
  9. Alexander CM, Bowden R, Fogel ML, Howard KT, Herd CD, Nittler LR (2012) The provenances of asteroids and their contributions to the volatile inventories of the terrestrila planets. Science 337:721–723CrossRefGoogle Scholar
  10. Allard P (1983) The origin of hydrogen, carbon, sulphur, nitrogen and rare gases in volcanic exhalations: evidence from isotope geochemistry. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 337–386Google Scholar
  11. Allen RB, Cuffey KM (2001) Oxygen- and hydrogen-isotopic ratios of water in precipitation: beyond paleothermometry. Rev Mineral Geochem 43:527–553CrossRefGoogle Scholar
  12. Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504 B. Earth Planet Sci Lett 80:217–229CrossRefGoogle Scholar
  13. Altabet MA, Deuser WC (1985) Seasonal variations in natural abundance of 15N in particles sinking to the deep Sargasso Sea. Nature 315:218–219CrossRefGoogle Scholar
  14. Altabet MA, McCarthy JJ (1985) Temporal and spatial variations in the natural abundance of 15N in POM from a warm-core ring. Deep Sea Res 32:755–772CrossRefGoogle Scholar
  15. Altabet MA, Deuser WG, Honjo S, Stienen C (1991) Seasonal and depth related changes in the source of sinking particles in the North Atlantic. Nature 354:136–139CrossRefGoogle Scholar
  16. Amari S, Hoppe P, Zinner E, Lewis RS (1993) The isotopic compositions of stellar sources of meteoritic graphite grains. Nature 365:806–809CrossRefGoogle Scholar
  17. Amrani A (2014) Organosulfur compounds: molecular and isotopic evolution from biota to oil and gas. Ann Rev Earth Planet Sci 42:733–768CrossRefGoogle Scholar
  18. Amrani A, Deev A, Sessions AL, Tang Y, Adkins JF, Hill RL, Moldowan JM, Wei Z (2012) The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochim Cosmochim Acta 84:152–164CrossRefGoogle Scholar
  19. An Y, Huang JX, Griffin WL, Liu C, Huang F (2017) Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons. Geochim Cosmochim Acta 200:167–185CrossRefGoogle Scholar
  20. Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Ann Rev Earth Planet Sci 35:717–746CrossRefGoogle Scholar
  21. Ancour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system. Chem Geol 159:87–105CrossRefGoogle Scholar
  22. Anderson AT, Clayton RN, Mayeda TK (1971) Oxygen isotope thermometry of mafic igneous rocks. J Geol 79:715–729CrossRefGoogle Scholar
  23. Angert A, Cappa CD, DePaolo DJ (2004) Kinetic O-17 effects in the hydrologic cycle: indirect evidence and implications. Geochim Cosmochim Acta 68:3487–3495CrossRefGoogle Scholar
  24. Antler G, Turchyn AV, Rennie V, Herut B, Sivan O (2013) Coupled sulphur and oxygen isotope insight into bacterial sulphate reduction in the natural environment. Geochim Cosmochim Acta 118:98–117CrossRefGoogle Scholar
  25. Antonelli MA, Kim ST, Peters M, Labidi J, Cartigny P, Walker RJ, Lyons JR, Hoek J, Farquhar J (2014) Early inner solar system origin for anomaleous sulfur isotopes in differentiated protoplanets. PNAS 111:17749–17754CrossRefGoogle Scholar
  26. Archer C, Vance D (2006) Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulphate reduction. Geology 34:153–156CrossRefGoogle Scholar
  27. Armytage RMG, Georg RB, Williams HM, Halliday AN (2012) Silicon isotopes in lunar rocks: implications for the Moon, s formation and the early history of the Earth. Geochim Cosmochim Acta 77:504–514CrossRefGoogle Scholar
  28. Arnold M, Sheppard SMF (1981) East Pacific Rise at 21°N: isotopic composition and origin of the hydrothermal sulfur. Earth Planet Sci Lett 56:148–156CrossRefGoogle Scholar
  29. Arthur MA, Dean WE, Claypool CE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature 315:216–218CrossRefGoogle Scholar
  30. Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem Geol 262:147–158CrossRefGoogle Scholar
  31. Ayliffe LK, Chivas AR (1990) Oxyen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim Cosmochim Acta 54:2603–2609CrossRefGoogle Scholar
  32. Ayliffe LK, Lister AM, Chivas AR (1992) The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeo, Palaeo, Palaeo 99:179–191CrossRefGoogle Scholar
  33. Ayliffe LK, Chivas AR, Leakey MG (1994) The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim Cosmochim Acta 58:5291–5298CrossRefGoogle Scholar
  34. Bacastow RB, Keeling CD, Lueker TJ, Wahlen M, Mook WG (1996) The δ 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: analysis of observations at Bermuda. Global Biochem Cycles 10:335–346CrossRefGoogle Scholar
  35. Baker AJ, Fallick AE (1989) Heavy carbon in two-billion-year-old marbles from Lofoten-Vesteralen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53:1111–1115CrossRefGoogle Scholar
  36. Baker J, Matthews A (1995) The stable isotope evolution of a metamorphic complex, Naxos, Greece. Contr Mineral Petrol 120:391–403CrossRefGoogle Scholar
  37. Baker JA, Macpherson CG, Menzies MA, Thirlwall MF, Al-Kadasi M, Mattey DP (2000) Resolving crustal and mantle contributions to continental flood volcanism, Yemen: constraints from mineral oxygen isotope data. J Petrol 41:1805–1820CrossRefGoogle Scholar
  38. Banner JL, Wasserburg GJ, Dobson PF, Carpenter AB, Moore CH (1989) Isotopic and trace element constraints on the orgin and evolution of saline groundwaters from central Missouri. Geochim Cosmochim Acta 53:383–398CrossRefGoogle Scholar
  39. Bao H (2015) Sulfate: a time capsule for Earth’s O2, O3 and H2O. Chem Geol 395:108–118CrossRefGoogle Scholar
  40. Bao H, Gu B (2004) Natural perchlorate has a unique oxygen isotope signature. Environ Sci Tech 38:5073–5077CrossRefGoogle Scholar
  41. Bao H, Koch PL (1999) Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis. Geochim Cosmochim Acta 63:599–613CrossRefGoogle Scholar
  42. Bao H, Thiemens MH, Farquahar J, Campbell DA, Lee CC, Heine K, Loope DB (2000) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–178CrossRefGoogle Scholar
  43. Bao H, Thiemens MH, Heine K (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth Planet Sci Lett 192:125–135CrossRefGoogle Scholar
  44. Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectr 19:3737–3742CrossRefGoogle Scholar
  45. Barkan E, Luz B (2007) Diffusivity fractionations of \( {\text{H}}_{ 2}^{ 1 6} {\text{O/H}}_{ 2}^{ 1 7} {\text{O}} \) and \( {\text{H}}_{ 2}^{ 1 6} {\text{O/H}}_{ 2}^{ 1 8} {\text{O}} \) in air and their implications for isotope hydrology. Rapid Commun Mass Spectrom 21:2999–3005Google Scholar
  46. Barkan E, Luz B (2011) The relationship among the three stable isotopes of oxygen in air, seawater and marine photosynthesis. Rapid Commun Mass Spectrom 25:2367–2369CrossRefGoogle Scholar
  47. Barnes I, Irwin WP, White DE (1978) Global distribution of carbon dioxide discharges and major zones of seismicity. US Geol Survey, Water-Resources Investigation, Open File Report, pp 78–39Google Scholar
  48. Barnes JJ, Franchi IA, Anand M, Tartese R, Starkey NA, Koike M, Sano Y, Russell SS (2013) Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apaites using NanoSIMS. Chem Geol 337–338:48–55CrossRefGoogle Scholar
  49. Baroni M, Thiemens MH, Delmas RJ, Savarino J (2007) Mass-independent sulfur isotopic composition in stratospheric volcanic eruptions. Science 315:84–87CrossRefGoogle Scholar
  50. Batenburg AM, Walter S et al (2011) Temporal and spatial variability of the stable isotope composition of atmospheric molecular hydrogen. Atm Chem Phys Discuss 11:10087–10120CrossRefGoogle Scholar
  51. Baumgartner LP, Rumble D (1988) Transport of stable isotopes: I: development of a kinetic continuum theory for stable isotope transport. Contr Mineral Petrol 98:417–430CrossRefGoogle Scholar
  52. Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. In: Stable Isotope Geochemistry. Rev Mineral Geochem 43:415–467CrossRefGoogle Scholar
  53. Bauska TK, Baggenstos D, Brook EJ, Mix AC, Marcott SA, Petrenko VV, Schaefer H, Severinghaus J, Lee JE (2016) Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. PNAS 113:3465–3470CrossRefGoogle Scholar
  54. Beaty DW, Taylor HP (1982) Some petrologic and oxygen isotopic relationships in the Amulet Mine, Noranda, Quebec, and their bearing on the origin of Archaean massive sulfide deposits. Econ Geol 77:95–108CrossRefGoogle Scholar
  55. Bechtel A, Hoernes S (1990) Oxygen isotope fractionation between oxygen of different sites in illite minerals: a potential geothermometer. Contrib Mineral Petrol 104:463–470CrossRefGoogle Scholar
  56. Bechtel A, Sun Y, Püttmann W, Hoernes S, Hoefs J (2001) Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangershausen Basin, Germany. Chem Geol 176:31–49CrossRefGoogle Scholar
  57. Becker RH, Epstein S (1982) Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites. Geochim Cosmochim Acta 46:97–103CrossRefGoogle Scholar
  58. Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118CrossRefGoogle Scholar
  59. Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:150–160CrossRefGoogle Scholar
  60. Bender ML, Keigwin LD (1979) Speculations about upper Miocene changes in abyssal Pacific dissolved bicarbonate δ13C. Earth Planet Sci Lett 45:383–393CrossRefGoogle Scholar
  61. Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem Cycles 8:363–376CrossRefGoogle Scholar
  62. Bennett SA, Rouxel O, Schmidt K, Garbe-Schönberg D, Statham PJ, German CR (2009) Iron isotope fractionation in a buyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochim Cosmochim Acta 73:5619–5634CrossRefGoogle Scholar
  63. Berndt ME, Seal RR, Shanks WC, Seyfried WE (1996) Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: experimental calibration and theoretical models. Geochim Cosmochim Acta 60:1595–1604CrossRefGoogle Scholar
  64. Berner RA (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:1382–1386CrossRefGoogle Scholar
  65. Berner U, Faber E, Scheeder G, Panten D (1995) Primary cracking of algal and landplant kerogens: kinetic models of isotope variations in methane, ethane and propane. Chem Geol 126:233–245CrossRefGoogle Scholar
  66. Beucher CP, Brzezinski MA, Jones JL (2008) Sources and biological fractionation of silicon isotopes in the Eastern Equatorial Pacific. Geochim Cosmochim Acta 72:3063–3073CrossRefGoogle Scholar
  67. Bickle MJ, Baker J (1990) Migration of reaction and isotopic fronts in infiltration zones: assessments of fluid flux in metamorphic terrains. Earth Planet Sci Lett 98:1–13CrossRefGoogle Scholar
  68. Bidigare RR et al (1997) Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem Cycles 11:279–292CrossRefGoogle Scholar
  69. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta\ 68:841–865CrossRefGoogle Scholar
  70. Bindeman IN, Eiler JN et al (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496CrossRefGoogle Scholar
  71. Bindeman IN, Eiler JM, Wing BA, Farquhar J (2007) Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim Cosmochim Acta 71:2326–2343CrossRefGoogle Scholar
  72. Bindeman IN, Gurenko A, Sigmarsson O, Chaussidon M (2008) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420CrossRefGoogle Scholar
  73. Bindeman IN, Serebryakov NS (2011) Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth Planet Sci Lett 306:163–174CrossRefGoogle Scholar
  74. Bird MI, Ascoughz PL (2012) Isotopes in pyrogenic carbon: a review. Org Geochem 42:1529–1539CrossRefGoogle Scholar
  75. Bird MI, Chivas AR (1989) Stable-isotope geochronology of the Australian regolith. Geochim Cosmochim Acta 53:3239–3256CrossRefGoogle Scholar
  76. Bird MI, Longstaffe FJ, Fyfe WS, Bildgen P (1992) Oxygen isotope systematics in a multiphase weathering system in Haiti. Geochim Cosmochim Acta 56:2831–2838CrossRefGoogle Scholar
  77. Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WD (2008) Magnesium isotope fractionation during plant growth. Environ Sci Technol 42:7831–7836CrossRefGoogle Scholar
  78. Blair N, Leu A, Munoz E, Olsen J, Kwong E, Desmarais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001Google Scholar
  79. Blake RE, O’Neil JR, Garcia GA (1997) Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta 61:441–4422CrossRefGoogle Scholar
  80. Blake RE, O’Neil JR, Surkov A (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. Am J Sci 305:596–620CrossRefGoogle Scholar
  81. Blättler CL, Miller NR, Higgins JA (2015) Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet Sci Lett 419:32–42CrossRefGoogle Scholar
  82. Blattner P, Dietrich V, Gansser A (1983) Contrasting 18O enrichment and origins of High Himalayan and Transhimalayan intrusives. Earth Planet Sci Lett 65:276–286CrossRefGoogle Scholar
  83. Blisnink PM, Stern LA (2005) Stable isotope altimetry: a critical review. Am J Sci 305:1033–1074CrossRefGoogle Scholar
  84. Blum TB, Kitajima K, Nakashima D, Strickland A, Spicuzza MJ, Valley JW (2016) Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain—Yellowstone hotspot and other low-δ18O large igneous provinces. Contr Mineral Petrol 171:92CrossRefGoogle Scholar
  85. Boctor NZ, Alexander CM, Wang J, Hauri E (2003) The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim Cosmochim Acta 67:3971–3989CrossRefGoogle Scholar
  86. Boehme SE, Blair NE, Chanton JP, Martens CS (1996) A mass balance of 13C and 12C in an organic-rich methane-producing marine sediment. Geochim Cosmochim Acta 60:3835–3848CrossRefGoogle Scholar
  87. Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite. Science 221:651–654CrossRefGoogle Scholar
  88. Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Jr Batista, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842CrossRefGoogle Scholar
  89. Bolliger C, Schroth MH, Bernasconi SM, Kleikemper J, Zeyer J (2001) Sulfur isotope fractionation during microbial reduction by toluene-degrading bacteria. Geochim Cosmochim Acta 65:3289–3299CrossRefGoogle Scholar
  90. Böttcher ME, Brumsack HJ, Lange GJ (1998) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean. Proc Ocean Drill Program, Sci Res 160:365–373Google Scholar
  91. Böttcher ME, Thamdrup B, Vennemann TW (2001) Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim Cosmochim Acta 65:1601–1609CrossRefGoogle Scholar
  92. Bottinga Y, Craig H (1969) Oxygen isotope fractionation between CO2 and water and the isotopic composition of marine atmospheric CO2. Earth Planet Sci Lett 5:285–295CrossRefGoogle Scholar
  93. Bottomley DJ, Katz A, Chan LH, Starinsky A, Douglas M, Clark ID, Raven KG (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155:295–320CrossRefGoogle Scholar
  94. Bowers TS, Taylor HP (1985) An integrated chemical and isotope model of the origin of midocean ridge hot spring systems. J Geophys Res 90:12583–12606CrossRefGoogle Scholar
  95. Bowman JR, O’Neil JR, Essene EJ (1985) Contact skarn formation at Elkhorn, Montana; II, Origin and evolution of C–O–H skarn fluids. Am J Sci 285:621–660CrossRefGoogle Scholar
  96. Boyd SR, Pillinger CT (1994) A preliminary study of 15N/14N in octahedral growth from diamonds. Chem Geol 116:43–59CrossRefGoogle Scholar
  97. Boyd SR, Pillinger CT, Milledge HJ, Mendelssohn MJ, Seal M (1992) C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle. Earth Planet Sci Lett 109:633–644CrossRefGoogle Scholar
  98. Bradley AS, Summons RE (2010) Multiple origins of methane at the Lost City hydrothermal field. Earth Planet Sci Lett 297:34–41CrossRefGoogle Scholar
  99. Brandriss ME, O’Neil JR, Edlund MB, Stoermer EF (1998) Oxygen isotope fractionation between diatomaceous silica and water. Geochim Cosmochim Acta 62:1119–1125CrossRefGoogle Scholar
  100. Brenninkmeijer CAM (1993) Measurement of the abundance of 14CO in the atmosphere and the 13C/12C and 18O/16O ratio of atmospheric CO with applications in New Zealand and Australia. J Geophys Res 98:10595–10614CrossRefGoogle Scholar
  101. Brenninkmeijer CAM, Lowe DC, Manning MR, Sparks RJ, van Velthoven PFJ (1995) The 13C, 14C and 18O isotopic composition of CO, CH4 and CO2 in the higher southern latitudes and lower stratosphere. J Geophys Res 100:26163–26172CrossRefGoogle Scholar
  102. Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS (2003) Isotope effects in the chemistry of atmospheric trace compounds. Chem Rev 103:5125–5161CrossRefGoogle Scholar
  103. Brzezinski MA, Jones JL (2015) Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean. Deep-Sea Res II 116:79–88CrossRefGoogle Scholar
  104. Bridgestock LJ, Williams H et al (2014) Unlocking the zinc isotope systematics of iron meteorites. Earth Planet Sci Lett 400:153–164CrossRefGoogle Scholar
  105. Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  106. Brüchert V, Pratt LM (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from the St. Andrew Bay, Florida, USA. Geochim Cosmochim Acta 60:2325–2332CrossRefGoogle Scholar
  107. Brumsack HJ, Zuleger E, Gohn E, Murray RW (1992) Stable and radiogenic isotopes in pore waters from Leg 1217, Japan Sea. Proc Ocean Drill Program 127(128):635–649Google Scholar
  108. Brunner B, Bernasconi SM, Kleikemper J, Schroth MH (2005) A model of oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction. Geochim Cosmochim Acta 69:4773–4785CrossRefGoogle Scholar
  109. Bryant JD, Koch PL, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim Cosmochim Acta 60:5145–5148CrossRefGoogle Scholar
  110. Buhl D, Neuser RD, Richter DK, Riedel D, Roberts B, Strauss H, Veizer J (1991) Nature and nurture: environmental isotope story of the river Rhine. Naturwissenschaften 78:337–346CrossRefGoogle Scholar
  111. Burdett JW, Arthur MA, Richardson A (1989) A Neogene seawater sulfate isotope age curve from calcareous pelagic microfossils. Earth Planet Sci Lett 94:189–198CrossRefGoogle Scholar
  112. Burke A, Adkins JF et al (2013) Constraining the modern riverine sulphur isotope budget. Abstr VM Goldschmidt ConfGoogle Scholar
  113. Burruss RC, Laughrey CD (2010) Carbon and hydrogen isotope reversal in deep basin gas: evidence for limits to the stability of hydrocarbons. Org Geochem 41:1285–1296CrossRefGoogle Scholar
  114. Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236:430–442CrossRefGoogle Scholar
  115. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JM, Hauri EH (2013) Anomaleous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493CrossRefGoogle Scholar
  116. Cai C, Zhang C, Worden RH, Xiao Q, Wang T, Gvirtzman Z, Li H, Said-Ahmad W, Lianqi J (2016) Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Plaleozoic petroleum pools of the Tarim Basin, NW China. Geochim Cosmochim Acta 182:88–108CrossRefGoogle Scholar
  117. Calmels D, Gaillerdet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35:1003–1006CrossRefGoogle Scholar
  118. Cameron EM (1982) Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–148CrossRefGoogle Scholar
  119. Cameron EM, Hall GEM, Veizer J, Krouse HR (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Columbia, Canada. Chem Geol 122:149–169CrossRefGoogle Scholar
  120. Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132CrossRefGoogle Scholar
  121. Canfield DE, Thamdrup B (1994) The production of 34S depleted sulfide during bacterial disproportion to elemental sulfur. Science 266:1973–1975CrossRefGoogle Scholar
  122. Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84CrossRefGoogle Scholar
  123. Cartigny P (2010) Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296:329–339CrossRefGoogle Scholar
  124. Cartigny P, Marty B (2013) Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9:359–366CrossRefGoogle Scholar
  125. Cartigny P, Boyd SR, Harris JW, Javoy M (1997) Nitrogen isotopes in peridotitic diamonds from Fuxian, China: the mantle signature. Terra Nova 9:175–179CrossRefGoogle Scholar
  126. Cartigny P, Harris JW, Javoy M (1998) Subduction related diamonds? The evidence for a mantle-derived origin from coupled δ13C–δ15N determinations. Chem Geol 147:147–159CrossRefGoogle Scholar
  127. Cartigny P, Palot M, Thomassot E, Harris JW (2014) Diamond formation: a stable isotope perspective. Ann Rev Earth Planet Sci 42:699–732CrossRefGoogle Scholar
  128. Cartwright I, Valley JW (1991) Steep oxygen isotope gradients at marble—metagranite contacts in the NW Adirondacks Mountains, N.Y. Earth Planet Sci Lett 107:148–163CrossRefGoogle Scholar
  129. Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400CrossRefGoogle Scholar
  130. Cerling TE, Sharp ZD (1996) Stable carbon and oxygen isotope analyses of fossil tooth enamel using laser ablation. Palaeo Palaeo Palaeoecol 126:173–186CrossRefGoogle Scholar
  131. Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chem Geol 52:281–293Google Scholar
  132. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345CrossRefGoogle Scholar
  133. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  134. Chakrabarti R, Knoll AH, Jacobsen SB, Fischer WW (2012) Si isotope variability in Proterozoic cherts. Geochim Cosmochim Acta 91:187–201CrossRefGoogle Scholar
  135. Chakraborty S, Muskatel BH, Jackson TL, Ahmed M, Levine RD, Thiemens MH (2014) Massive isotopic effect in vacuum of N2 and implications for meteorite data. PNAS 111:14704–14709CrossRefGoogle Scholar
  136. Chamberlain CP, Poage MA (2000) Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 28:115–118CrossRefGoogle Scholar
  137. Chapligin B, Leng MJ et al (2011) Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochim Cosmochim Acta 75:7242–7256CrossRefGoogle Scholar
  138. Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386CrossRefGoogle Scholar
  139. Chaussidon M, Albarede F, Sheppard SMF (1987) Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330:242–244CrossRefGoogle Scholar
  140. Chaussidon M, Albarede F, Sheppard SMF (1989) Sulphur isotope variations in the mantle from ion microprobe analysis of microsulphide inclusions. Earth Planet Sci Lett 92:144–156CrossRefGoogle Scholar
  141. Chazot G, Lowry D, Menzies M, Mattey D (1997) Oxygen isotope compositions of hydrous and anhydrous mantle peridotites. Geochim Cosmochim Acta 61:161–169CrossRefGoogle Scholar
  142. Chen H, Savage PS, Teng FZ, Helz RT, Moynier F (2013) Zinc isotopic fractionation during magmatic differentiation and the isotopic composition of bulk Earth. Earth Planet Sci Lett 369–370:34–42CrossRefGoogle Scholar
  143. Chiba H, Sakai H (1985) Oxygen isotope exchange rate between dissolved sulphate and water at hydrothermal temperatures. Geochim Cosmochim Acta 49:993–1000CrossRefGoogle Scholar
  144. Chivas AR, Andrew AS, Sinha AK, O’Neil JR (1982) Geochemistry of Pliocene-Pleistocene oceanic arc plutonic complex, Guadalcanal. Nature 300:139–143CrossRefGoogle Scholar
  145. Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–1102CrossRefGoogle Scholar
  146. Cifuentes LA, Fogel ML, Pennock JR, Sharp JR (1989) Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochim Cosmochim Acta 53:2713–2721CrossRefGoogle Scholar
  147. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  148. Clayton RN (2002) Self-shielding in the solar nebula. Nature 451:860–861CrossRefGoogle Scholar
  149. Clayton RN (2004) Oxygen isotopes in meteorites. Treatise on geochemistry, vol 1. Elsevier, Amsterdam, pp 129–142Google Scholar
  150. Clayton RN, Mayeda TK (1996) Oxygen isotope studies of achondrites. Geochim Cosmochim Acta 60:1999–2017CrossRefGoogle Scholar
  151. Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104CrossRefGoogle Scholar
  152. Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Ann Rev Astron Astrophys 42:39–78CrossRefGoogle Scholar
  153. Clayton RN, Steiner A (1975) Oxygen isotope studies of the geothermal system at Warakei, New Zealand. Geochim Cosmochim Acta 39:1179–1186CrossRefGoogle Scholar
  154. Clayton RN, Friedman I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters: 1. Isotopic composition. J Geophys Res 71:3869–3882CrossRefGoogle Scholar
  155. Clayton RN, Muffler LJP, White (1968) Oxygen isotope study of calcite and silicates of the River Branch No. I well, Salton Sea geothermal field, California. Am J Sci 266:968–979CrossRefGoogle Scholar
  156. Clayton RN, Grossman L, Mayeda TK (1973a) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488CrossRefGoogle Scholar
  157. Clayton RN, Hurd JM, Mayeda TK (1973b) Oxygen isotopic compositions of Apollo 15, 16 and 17 samples and their bearing on lunar origin and petrogenesis. In: Proceedings of 4th lunar Science Conference, Geochimica Cosmochimica Acta Supplement, vol 2, pp 1535–1542Google Scholar
  158. Cliff SS, Thiemens MH (1997) The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: a mass independent anomaly. Science 278:1774–1776CrossRefGoogle Scholar
  159. Cliff SS, Brenninkmeijer CAM, Thiemens MH (1999) First measurement of the 18O/16O and 17O/16O ratios in stratospheric nitrous oxide: a mass-independent anomaly. J Geophys Res 104:16171–16175CrossRefGoogle Scholar
  160. Cline JD, Kaplan IR (1975) Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar Chem 3:271–299CrossRefGoogle Scholar
  161. Clog M, Aubaud C, Cartigny P, Dosso L (2013) The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet Sci Lett 381:156–165CrossRefGoogle Scholar
  162. Clor LE, Fischer TP, Hilton DR, Sharp ZD, Hartono U (2005) Volatile and N isotope chemistry of the Molucca Sea collision zone: tracing source components along the Sangihe arc, Indonesia. Geochem Geophys Geosys 6:Q03J14. Scholar
  163. Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482CrossRefGoogle Scholar
  164. Cohen AS, Coe Al, Kemp DB (2007) The Late-Paleocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J Geol Soc 164:1093–1108CrossRefGoogle Scholar
  165. Cole JE, Fairbanks RG (1990) The southern oscillation recorded in the δ18O of corals from Tarawa atoll. Paleoceanography 5:669–683CrossRefGoogle Scholar
  166. Cole JE, Fairbanks RG, Shen GT (1993) The spectrum of recent variability in the southern oscillation: results from a Tarawa atoll. Science 260:1790–1793CrossRefGoogle Scholar
  167. Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK (2005) Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. PNAS 102:13023–13028CrossRefGoogle Scholar
  168. Connolly CA, Walter LM, Baadsgaard H, Longstaffe F (1990) Origin and evolution of formation fluids, Alberta Basin, western Canada sedimentary basin: II. Isotope systematics and fluid mixing. Appl Geochem 5:397–414CrossRefGoogle Scholar
  169. Conway TM, John SG (2014) Quantification of dissolved iron sources in the North Atlantic Ocean. Nature 511:212–215CrossRefGoogle Scholar
  170. Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean – insights from stable isotopes. Geochim Cosmochim Acta 164:262–283CrossRefGoogle Scholar
  171. Cook N, Hoefs J (1997) Sulphur isotope characteristics of metamorphosed Cu–(Zn) volcanogenic massive sulphide deposits in the Norwegian Caledonides. Chem Geol 135:307–324CrossRefGoogle Scholar
  172. Cooper KM, Eiler JM, Asimov PD, Langmuir CH (2004) Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett 220:297–316CrossRefGoogle Scholar
  173. Coplen TB (2007) Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957CrossRefGoogle Scholar
  174. Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane. I. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310CrossRefGoogle Scholar
  175. Cortecci G, Longinelli A (1970) Isotopic composition of sulfate in rain water, Pisa, Italy. Earth Planet Sci Lett 8:36–40CrossRefGoogle Scholar
  176. Craddock PR, Dauphas N (2010) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123CrossRefGoogle Scholar
  177. Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotope composition of the Earth. Earth Planet Sci Lett 365:63–76CrossRefGoogle Scholar
  178. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92CrossRefGoogle Scholar
  179. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  180. Craig H, Gordon L (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Symposium on marine geochemistry. Graduate School of Oceanography, vol 3. University of Rhode Island, OCC Publications, p 277Google Scholar
  181. Craig H, Boato G, White DE (1956) Isotopic geochemistry of thermal waters. In: Proceedings of 2nd Conference on Nuclear Process Geological Settings, p 29Google Scholar
  182. Craig H, Chou CC, Welhan JA, Stevens CM, Engelkemeier A (1988) The isotopic composition of methane in polar ice cores. Science 242:1535–1539CrossRefGoogle Scholar
  183. Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. Stable isotopes in high temperature geological processes. Rev Mineral 16:373–424Google Scholar
  184. Criss RE, Champion DE, McIntyre DH (1985) Oxygen isotope, aeromagnetic and gravity anomalies associated with hydrothermally altered zones in the Yankee Fork Mining District, Custer County, Idaho. Econ Geol 80:1277–1296CrossRefGoogle Scholar
  185. Criss RE, Fleck RJ, Taylor HP (1991) Tertiary meteoric hydrothermal systems and their relation to ore deposition, Northwestern United States and Southern British Columbia. J Geophys Res 96:133335–13356CrossRefGoogle Scholar
  186. Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400CrossRefGoogle Scholar
  187. Cummins RC, Finnegan S, Fike DA, Eiler JM, Fischer WW (2014) Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O. Geochim Cosmochim Acta 140:241–258CrossRefGoogle Scholar
  188. Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Quaternary deep-water circulation changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene. Paleoceanography 3:317–342CrossRefGoogle Scholar
  189. Cypionka H, Smock A, Böttcher MA (1998) A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 166:181–186CrossRefGoogle Scholar
  190. D‘Errico ME, Lackey JS, Surpless BE, Loewy SL, Wooden JL, Barnes JD, Strickland A, Valley JW (2012) A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada magmatic arc from low-d 18O skarn garnets. Geology 40:763–766CrossRefGoogle Scholar
  191. Daeron M, Guo W et al (2011) 13C18O clumping in speleothems: observations from natural caves and precipitation experiments. Geochim Cosmochim Acta 75:3303–3317CrossRefGoogle Scholar
  192. Daniels WC, Russell JM, Giblin AE, Welker JM, Klein ES, Huang Y (2017) Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra. Geochim Cosmochim Acta 213:216–236CrossRefGoogle Scholar
  193. Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  194. Dansgaard W et al (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  195. Dauphas N, Marty B (1999) Heavy nitrogen in carbonatites of the Kola peninsula: a possible signature of the deep mantle. Science 286:2488–2490CrossRefGoogle Scholar
  196. Dauphas N, Teng NZ, Arndt NT (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 74:3274–3291CrossRefGoogle Scholar
  197. Dauphas N, John SG, Rouxel O (2017) Iron isotope systematics. Rev Mineral Geochem 82:415–510CrossRefGoogle Scholar
  198. Day JM, Moynier F (2014) Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil Trtans Roy Soc A 372:20130259CrossRefGoogle Scholar
  199. De Hoog JCM, Taylor BE, Van Bergen MJ (2009) Hydrogen-isotope systematics in degassing basaltic magma and application to Indonesian arc basalts. Chem Geol 266:256–266CrossRefGoogle Scholar
  200. De La Rocha CL, De Paolo DJ (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178CrossRefGoogle Scholar
  201. De Moor JM, Fischer TP et al (2013) Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem Geophys Geosys 14(10).
  202. De Moor JM, Fischer TP, Sharp ZD, Hauri EH, Hilton DR, Atudorei V (2010) Sulfur isotope fractionation during the May 2003 eruption of Anatahan volcano, Mariana Islands: implications for sulfur sources and plume processes. Geochim Cosmochim Acta 74:5382–5397CrossRefGoogle Scholar
  203. De Souza GF, Reynolds BC, Johnson GC, Bullister JL, Bourdon B (2012) Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean. Global Biogeochem Cycl 26:GB2035.
  204. De Souza GF, Slater RD, Hain MP, Brzezinski MA (2015) Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water. Earth Planet Sci Lett 432:342–353CrossRefGoogle Scholar
  205. Degens ET, Epstein S (1962) Relationship between 18O/16O ratios in coexisting carbonates, cherts and diatomites. Bull Am Assoc Pet Geol 46:534–535Google Scholar
  206. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry, vol l. Elsevier, New York, Amsterdam, pp 239–406Google Scholar
  207. Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites, genesis and evolution. Unwin Hyman, London, p 619Google Scholar
  208. Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733CrossRefGoogle Scholar
  209. Deines P, Haggerty SE (2000) Small-scale oxygen isotope variations and petrochemistry of ultradeep (>300 km) and transition zone xenoliths. Geochim Cosmochim Acta 64:117–131CrossRefGoogle Scholar
  210. Deines P, Gurney JJ, Harris JW (1984) Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier Kimberlite, South Africa. Geochim Cosmochim Acta 48:325–342CrossRefGoogle Scholar
  211. Delaygue G, Jouzel J, Dutay JC (2000) Oxygen-18–salinity relationship simulated by an oceanic general simulation model. Earth Planet Sci Lett 178:113–123CrossRefGoogle Scholar
  212. Deloule E, Robert F (1995) Interstellar water in meteorites? Geochim Cosmochim Acta 59:4695–4706CrossRefGoogle Scholar
  213. Deloule E, Robert F, Doukhan JC (1998) Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim Cosmochim Acta 62:3367–3378CrossRefGoogle Scholar
  214. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  215. DeNiro MJ, Epstein S (1979) Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water. Science 204:51–53CrossRefGoogle Scholar
  216. DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45:1885–1894CrossRefGoogle Scholar
  217. Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74:4110–4122CrossRefGoogle Scholar
  218. Dennis PF, Rowe PJ, Atkinson TC (2001) The recovery and isotopic measurement of water from fluid inclusions in speleothems. Geochim Cosmochim Acta 65:871–884CrossRefGoogle Scholar
  219. Dennis KJ, Cochran JK, Landman NH, Schrag DP (2013) The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to western interior seaway macrofossil. Earth Planet Sci Lett 362:51–65CrossRefGoogle Scholar
  220. Derry LA, Kaufmann AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329CrossRefGoogle Scholar
  221. Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley J, Cole D (eds) Stable isotope geochemistry. Rev Mineralogy 43:555–578CrossRefGoogle Scholar
  222. Des Marais DJ, Moore JG (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet Sci Lett 69:43–57CrossRefGoogle Scholar
  223. Deutsch S, Ambach W, Eisner H (1966) Oxygen isotope study of snow and firn of an Alpine glacier. Earth Planet Sci Lett 1:197–201CrossRefGoogle Scholar
  224. Dickens GR (2003) Rethinking the global carbon cycle with a large dynamic and micrmediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–182CrossRefGoogle Scholar
  225. Dickson JAD, Coleman ML (1980) Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27:107–118CrossRefGoogle Scholar
  226. Dickson JAD, Smalley PC, Raheim A, Stijfhoorn DE (1990) Intracrystalline carbon and oxygen isotope variations in calcite revealed by laser micro-sampling. Geology 18:809–811CrossRefGoogle Scholar
  227. Dietzel M, Tang J, Leis A, Köhler SJ (2009) Oxygen isotopic fractionation during inorganic calcite precipitation—effects of temperature, precipitation rate and pH. Chem Geol 268:107–115CrossRefGoogle Scholar
  228. Dipple GM, Ferry JM (1992) Fluid flow and stable isotope alteration in rocks at elevated temperatures with applications to metamorphism. Geochim Cosmochim Acta 56:3539–3550CrossRefGoogle Scholar
  229. Dobson PF, O’Neil JR (1987) Stable isotope composition and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan. Earth Planet Sci Lett 82:75–86CrossRefGoogle Scholar
  230. Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730CrossRefGoogle Scholar
  231. Dodd JP, Sharp ZD (2010) A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments. Geochim Cosmochim Acta 74:1381–1390CrossRefGoogle Scholar
  232. Dodd JP, Sharp ZD, Fawcett PJ, Brearley AJ, McCubbin FM (2013) Rapid post-mortem maturation of diatom silica oxygen isotope values. Geochem Geophys Geosys 13(9).
  233. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contr Mineral Petrol 40:259–274CrossRefGoogle Scholar
  234. Dole M, Lange GA, Rudd DP, Zaukelies DA (1954) Isotopic composition of atmospheric oxygen and nitrogen. Geochim Cosmochim Acta 6:65–78CrossRefGoogle Scholar
  235. Donahue TM, Hoffman JH, Hodges RD, Watson AJ (1982) Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216:630–633CrossRefGoogle Scholar
  236. Dorendorf F, Wiechert U, Wörner G (2000) Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka, Russia. Earth Planet Sci Lett 175:69–86CrossRefGoogle Scholar
  237. Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458CrossRefGoogle Scholar
  238. Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44CrossRefGoogle Scholar
  239. Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794CrossRefGoogle Scholar
  240. Driesner T, Seward TM (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4–5 molal aqueous NaCl and KCl solutions to 400 °C. Geochim Cosmochim Acta 64:1773–1784CrossRefGoogle Scholar
  241. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galapagos corals. Paleoceanography 9:291–315CrossRefGoogle Scholar
  242. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global circulation. Paleoceanography 3:343–360CrossRefGoogle Scholar
  243. Durka W, Schulze ED, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767CrossRefGoogle Scholar
  244. Ehhalt D, Rohrer F (2009) The tropospheric cycle of H2: a critical review. Tellus 61:500–535CrossRefGoogle Scholar
  245. Eiler JM (2007) The study of naturally-occurring multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327CrossRefGoogle Scholar
  246. Eiler JM (2013) The isotopic anatomies of molecules and minerals. Ann Rev Earth Planet Sci 41:411–441CrossRefGoogle Scholar
  247. Eiler JM, Kitchen N (2004) Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochim Cosmochim Acta 68:1395–1411CrossRefGoogle Scholar
  248. Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contr Mineral Petrol 112:543–557CrossRefGoogle Scholar
  249. Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583CrossRefGoogle Scholar
  250. Eiler JM, Farley KA, Valley JW, Hofmann A, Stolper EM (1996) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett 144:453–468CrossRefGoogle Scholar
  251. Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256CrossRefGoogle Scholar
  252. Eiler JM, Stolper EM, McCanta M (2011) Intra- and intercrystalline oxygen isotope variations in minerals from basalts and peridotites. J Petrol 52:1393–1413CrossRefGoogle Scholar
  253. Eiler JM et al (2014) Frontiers of stable isotope geoscience. Chem Geol 372:119–143CrossRefGoogle Scholar
  254. Elardo SM, Shahar A (2017) Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat Geosci 10:317–321CrossRefGoogle Scholar
  255. Eldridge CS, Compston W, Williams IS, Both RA, Walshe JL, Ohmoto H (1988) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. I. An example from the Rammelsberg ore body. Econ Geol 83:443–449CrossRefGoogle Scholar
  256. Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotopic evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653CrossRefGoogle Scholar
  257. Eldridge CS, Williams IS, Walshe JL (1993) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. II. A study of the H.Y.C. deposit at McArthur River, Northern Territory. Australia Econ Geol 88:1–26CrossRefGoogle Scholar
  258. Elkins LJ, Fischer TP, Hilton DR, Sharp ZD, McKnight S, Walker J (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235CrossRefGoogle Scholar
  259. Elliot M, Labeyrie L, Duplessy JC (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quat Sci Rev 21:1153–1165CrossRefGoogle Scholar
  260. Elliott T, Jeffcoate AB, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245CrossRefGoogle Scholar
  261. Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578CrossRefGoogle Scholar
  262. Emiliani C (1978) The cause of the ice ages. Earth Planet Sci Lett 37:349–354CrossRefGoogle Scholar
  263. Engel MH, Macko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:47–49CrossRefGoogle Scholar
  264. Epica community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  265. Epstein S, Yapp CJ, Hall JH (1976) The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth Planet Sci Lett 30:241–251CrossRefGoogle Scholar
  266. Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209–1215CrossRefGoogle Scholar
  267. Epstein S, Krishnamurthy RV, Cronin JR, Pizzarello S, Yuen GU (1987) Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326:477–479CrossRefGoogle Scholar
  268. Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031CrossRefGoogle Scholar
  269. Eslinger EV, Savin SM (1973) Oxygen isotope geothermometry of the burial metamorphic rocks of the Precambrian Belt Supergroup, Glacier National Park, Montana. Bull Geol Soc Am 84:2549–2560CrossRefGoogle Scholar
  270. Estep MF, Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim Cosmochim Acta 44:1197–1206CrossRefGoogle Scholar
  271. Etiope G, Schoell M (2014) Abiotic gas: atypical, but not rare. Elements 10:291–296CrossRefGoogle Scholar
  272. Etiope G, Sherwood-Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51:276–299CrossRefGoogle Scholar
  273. Evans BW, Hattori K, Baronnet A (2013) Serpentinite: what, why where? Elements 9:99–106CrossRefGoogle Scholar
  274. Exley RA, Mattey DP, Boyd SR, Pillinger CT (1987) Nitrogen isotope geochemistry of basaltic glasses: implications for mantle degassing and structure. Earth Planet Sci Lett 81:163–174CrossRefGoogle Scholar
  275. Fairbanks RG (1989) A 17000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  276. Fantle MS (2010) Evaluating the Ca isotope proxy. Am J Sci 310:194–210CrossRefGoogle Scholar
  277. Fantle MS, De Paolo DJ (2005) Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett 237:102–117CrossRefGoogle Scholar
  278. Fantle MS, De Paolo DJ (2007) Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Caaq2+-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistoce sediments. Geochim Cosmochim Acta 71:2524–2546CrossRefGoogle Scholar
  279. Fantle MS, Higgins J (2014) The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim Cosmochim Acta 142:458–481CrossRefGoogle Scholar
  280. Farkas J, Buhl D, Blenkinsop J, Veizer J (2007) Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ44/40 Ca of marine skeletal carbonates. Earth Planet Sci Lett 253:96–111CrossRefGoogle Scholar
  281. Farquhar J, Thiemens MH (2000) The oxygen cycle of the Martian atmosphere-regolith system: Δ17Ο of secondary phases in Nakhla and Lafayette. J Geophys Res 105:11991–11998CrossRefGoogle Scholar
  282. Farquhar GD et al (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443CrossRefGoogle Scholar
  283. Farquhar J, Chacko T, Ellis DJ (1996) Preservation of oxygen isotopic compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contr Mineral Petrol 125:213–224CrossRefGoogle Scholar
  284. Farquhar J, Thiemens MH, Jackson T (1998) Atmosphere-surface interactions on Mars: Δ17Ο measurements of carbonate from ALH 84001. Science 280:1580–1582CrossRefGoogle Scholar
  285. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759CrossRefGoogle Scholar
  286. Farquhar J, Wing B, McKeegan KD, Harris JW (2002) Insight into crust-mantle coupling from anomalous Δ33S of sulfide inclusions in diamonds. Geochim Cosmochim Acta Spec Suppl 66:A225Google Scholar
  287. Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36CrossRefGoogle Scholar
  288. Farquhar J, Kim ST, Masterson A (2007) Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth Planet Sci Lett 264:1–8CrossRefGoogle Scholar
  289. Ferry JM (1992) Regional metamorphism of the waits river formation: delineation of a new type of giant hydrothermal system. J Petrol 33:45–94CrossRefGoogle Scholar
  290. Ferry JM, Dipple GM (1992) Models for coupled fluid flow, mineral reaction and isotopic alteration during contact metamorphism: the Notch Peak aureole, Utah. Am Mineral 77:577–591Google Scholar
  291. Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy from clumped isotope thermometry. Geology 39:571–574CrossRefGoogle Scholar
  292. Ferry JM, Kitajima K, Strickland A, Valley JW (2014) Ion microprobe survey of the grain-scale oxygen isotope geochemistry of minerals in metamorphic rocks. Geochim Cosmochim Acta 144:403–433CrossRefGoogle Scholar
  293. Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Hunziker JC (2004) Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic-hydrothermal systems. Geochim Cosmochim Acta 68:2321–2334CrossRefGoogle Scholar
  294. Field CW, Gustafson LB (1976) Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile. Econ Geol 71:1533–1548CrossRefGoogle Scholar
  295. Fiorentini E, Hoernes S, Hoffbauer R, Vitanage PW (1990) Nature and scale of fluid-rock exchange in granulite-grade rocks of Sri Lanka: a stable isotope study. In: Vielzeuf D, Vidal PH (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 311–338CrossRefGoogle Scholar
  296. Fischer TP, Giggenbach WF, Sano Y, Williams SN (1998) Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet Sci Lett 160:81–96CrossRefGoogle Scholar
  297. Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157CrossRefGoogle Scholar
  298. Fittoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet Sci Lett 287:77–85CrossRefGoogle Scholar
  299. Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 73–98CrossRefGoogle Scholar
  300. Francey RJ, Tans PP (1987) Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327:495–497CrossRefGoogle Scholar
  301. Franchi IA, Wright IP, Sexton AS, Pillinger T (1999) The oxygen isotopic composition of Earth and Mars. Meteorit Planet Sci 34:657–661CrossRefGoogle Scholar
  302. Franz HB et al (2014) Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. Nature 508:364–368CrossRefGoogle Scholar
  303. Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks, Geological Association of Canada, Special Paper, vol 33. pp 19–38Google Scholar
  304. Frape SK, Fritz P, McNutt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627CrossRefGoogle Scholar
  305. Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem Cycles 6:185–198CrossRefGoogle Scholar
  306. Freeman KH, Hayes JM, Trendel JM, Albrecht P (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256CrossRefGoogle Scholar
  307. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253CrossRefGoogle Scholar
  308. Freyer HD (1979) On the 13C-record in tree rings. I. 13C variations in northern hemisphere trees during the last 150 years. Tellus 31:124–137Google Scholar
  309. Freyer HD, Belacy N (1983) 13C/12C records in northern hemispheric trees during the past 500 years—anthropogenic impact and climatic superpositions. J Geophys Res 88:6844–6852CrossRefGoogle Scholar
  310. Fricke HC, O’Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170:181–196CrossRefGoogle Scholar
  311. Fricke HC, Wickham SM, O’Neil JR (1992) Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains—East Humboldt Range core complex, Nevada. Contr Mineral Petrol 111:203–221CrossRefGoogle Scholar
  312. Fricke HC, Clyde WC, O’Neil JR (1998a) Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim Cosmochim Acta 62:1839–1850CrossRefGoogle Scholar
  313. Fricke HC, Clyde WC, O’Neil JR, Gingerich PD (1998b) Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet Sci Lett 160:193–208CrossRefGoogle Scholar
  314. Fripiat F, Cavagna AJ, Delairs F, de Brauwere A, Andre L, Cardinal D (2012) Processes controlling the Si isotopic composition in the Southern Ocean and application for paleoceanography. Biogeosciences 9:2443–2457CrossRefGoogle Scholar
  315. Frost CD, von Blanckenburg F, Schoenberg R, Frost BR, Swapp SM (2007) Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contr Mineral Petrol 153:211–235CrossRefGoogle Scholar
  316. Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnol Oceanogr 3:1182–1190CrossRefGoogle Scholar
  317. Fu B, Kita NT, Wilde SA, Liu X, Cliff J, Greig A (2012) Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China. Contr Mineral Petrol 165:641–662CrossRefGoogle Scholar
  318. Fu Q, Sherwood Lollar B, horita J, Lacrampe-Couloume G, Seyfried WE (2007) Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochim Cosmochim Acta 71:1982–1998CrossRefGoogle Scholar
  319. Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ER, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64CrossRefGoogle Scholar
  320. Galimov EM (1985) The relation between formation conditions and variations in isotope compositions of diamonds. Geochem Int 22(1):118–141Google Scholar
  321. Galimov EM (1988) Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chem Geol 71:77–95CrossRefGoogle Scholar
  322. Galimov EM (1991) Isotopic fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Acta 55:1697–1708CrossRefGoogle Scholar
  323. Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262CrossRefGoogle Scholar
  324. Gao X, Thiemens MH (1993a) Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim Cosmochim Acta 57:3159–3169CrossRefGoogle Scholar
  325. Gao X, Thiemens MH (1993b) Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim Cosmochim Acta 57:3171–3176CrossRefGoogle Scholar
  326. Gao Y, Hoefs J, Przybilla R, Snow JE (2006) A complete oxygen isotope profile through the lower oceanic crust, ODP hole 735B. Chem Geol 233:217–234CrossRefGoogle Scholar
  327. Garlick GD, Epstein S (1967) Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim Cosmochim Acta 31:181CrossRefGoogle Scholar
  328. Gat JR (1971) Comments on the stable isotope method in regional groundwater investigation. Water Resour Res 7:980CrossRefGoogle Scholar
  329. Gat JR (1984) The stable isotope composition of Dead Sea waters. Earth Planet Sci Lett 71:361–376CrossRefGoogle Scholar
  330. Gat JR, Issar A (1974) Desert isotope hydrology: water sources of the Sinai desert. Geochim Cosmochim Acta 38:1117–11131CrossRefGoogle Scholar
  331. Gazquez F, Evans NP, Hodell DA (2017) Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4x2H2O (gypsum). Geochim Cosmochim Acta 198:259–270CrossRefGoogle Scholar
  332. Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river water. Earth Planet Sci Lett 249:290–306CrossRefGoogle Scholar
  333. Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106CrossRefGoogle Scholar
  334. Gerdes ML, Baumgartner LP, Person M, Rumble D (1995) One- and two-dimensional models of fluid flow and stable isotope exchange at an outcrop in the Adamello contact aureole, Southern Alps, Italy. Am Mineral 80:1004–1019CrossRefGoogle Scholar
  335. Gerlach TM, Thomas DM (1986) Carbon and sulphur isotopic composition of Kilauea parental magma. Nature 319:480–483CrossRefGoogle Scholar
  336. Gerlach TM, Taylor BE (1990) Carbon isotope constraints on degassing of carbon dioxide from Kilauea volcano. Geochim Cosmochim Acta 54:2051–2058CrossRefGoogle Scholar
  337. Gerst S, Quay P (2001) Deuterium component of the global molecular hydrogen cycle. J Geophys Res 106:5021–5031CrossRefGoogle Scholar
  338. Geske A, Goldstein RH, Mavromatis V, Richter DK, Buhl D, Kluge T, John CM, Immenhauser A (2015a) The magnesium isotope (δ26Mg) signature of dolomites. Geochim Cosmochim Acta 149:131–151CrossRefGoogle Scholar
  339. Geske A, Lokier S, Dietzel M, Richter DK, Buhl D, Immenhauser A (2015b) Magnesium isotope composition of sabkha porewater and related sub-recent stoichiometric dolomites, Abu Dabi (UAE). Chem Geol 393–394:112–124CrossRefGoogle Scholar
  340. Ghosh P et al (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  341. Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510CrossRefGoogle Scholar
  342. Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N (2016) Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim Cosmochim Acta 177:205–216CrossRefGoogle Scholar
  343. Giletti BJ (1986) Diffusion effect on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228CrossRefGoogle Scholar
  344. Gilg HA (2000) D–H evidence for the timing of kaolinization in Northeast Bavaria, Germany. Chem Geol 170:5–18CrossRefGoogle Scholar
  345. Girard JP, Savin S (1996) Intercrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination. Geochim Cosmochim Acta 60:469–487CrossRefGoogle Scholar
  346. Given RK, Lohmann KC (1985) Derivation of the original isotopic composition of Permian marine cements. J Sediment Petrol 55:430–439Google Scholar
  347. Goericke R, Fry B (1994) Variations of marine plankton δ13C with latitude, temperature and dissolved CO2 in the world ocean. Global Geochem Cycles 8:85–90CrossRefGoogle Scholar
  348. Goldhaber MB, Kaplan IR (1974) The sedimentary sulfur cycle. In: Goldberg EB (ed) The sea, vol IV. Wiley, New YorkGoogle Scholar
  349. Goldhammer T, Brunner B, Bernasconi SM, Ferdelman TG, Zabel M (2011) Phosphate oxygen isotopes: insights into sedimentary phosphorus cycling from the Benguela upwelling system. Geochim Cosmochim Acta 75:3741–3756CrossRefGoogle Scholar
  350. Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam, pp 112–168Google Scholar
  351. Grachev AM, Severinghaus JP (2003) Laboratory determination of thermal diffusion constants for 29N/28N2 in air at temperatures from −60 to 0 °C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360CrossRefGoogle Scholar
  352. Graham S, Pearson N, Jackson S, Griffin W, O‘Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit. Chem Geol 207:147–169CrossRefGoogle Scholar
  353. Grasse P, Ehlert C, Frank M (2013) The influence of water mass mixing on the dissolved Si isotope composition in the eastern Equatorial Pacific. Earth Planet Sci Lett 380:60–71CrossRefGoogle Scholar
  354. Green GR, Ohmoto D, Date J, Takahashi T (1983) Whole-rock oxygen isotope distribution in the Fukazawa-Kosaka Area, Hokuroko District, Japan and its potential application to mineral exploration. Econ Geol Monogr 5:395–411Google Scholar
  355. Greenop R, Hain MP, Sosdian SM, Oliver KI, Goodwin P, Chalk TB, Lear CH, Wilson PA, Foster GL (2017) A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim Past 13:149–170CrossRefGoogle Scholar
  356. Greenwood JP, Riciputi LR, McSween HY (1997) Sulfide isotopic compositions in shergottites and ALH 84001, and possible implications for life on Mars. Geochim Cosmochim Acta 61:4449–4453CrossRefGoogle Scholar
  357. Greenwood RC, Franchi IA, Jambon A, Barrat JA, Burbine TH (2006) Oxygen isotope variation in stony-iron meteorites. Science 313:1763–1765CrossRefGoogle Scholar
  358. Greenwood JP, Itoh S, Sakamoto N, Vicenzi EP, Yurimoto H (2008) Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett 35:5203CrossRefGoogle Scholar
  359. Greenwood JP, Itoh S, Sakamoto N, Warren P, Taylor L, Yurimoto H (2011) Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat Geosci 4:79–82CrossRefGoogle Scholar
  360. Greenwood PF, Mohammed L, Grice K, McCulloch M, Schwark L (2018) The application of compound-specific sulfur isotopes to the oil-source rock correlation of Kurdistan petroleum. Org Geochem 117:22–30CrossRefGoogle Scholar
  361. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at Mid-Ocean Ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  362. Gregory RT, Taylor HP (1986) Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O, Neil-Carmichael 18O/16O geothermometer. Contr Mineral Petrol 93:114–119CrossRefGoogle Scholar
  363. Griffith EM, Paytan A, Kozdon R, Eisenhauer A, Ravelo AC (2008a) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136CrossRefGoogle Scholar
  364. Griffith EM, Schauble EA, Bullen TD, Paytan A (2008b) Characterization of calcium isotopes in natural and synthetic barite. Geochim Cosmochim Acta 72:5641–5658CrossRefGoogle Scholar
  365. Griffith EM, Payton A, Caldeira K, Bullen TD, Thomas E (2008c) A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–1674CrossRefGoogle Scholar
  366. Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranite and gabbros. Contr Mineral Petrol 161:13–33CrossRefGoogle Scholar
  367. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP-2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  368. Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512CrossRefGoogle Scholar
  369. Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and Δ14C proxy records. Earth Sci Rev 81:67–91CrossRefGoogle Scholar
  370. Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cycles 12:165–191CrossRefGoogle Scholar
  371. Gruber N et al (1999) Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem Cycles 13:307–335CrossRefGoogle Scholar
  372. Guelke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci Tech 41:1896–1901CrossRefGoogle Scholar
  373. Guilbaud R, Butler IB, Ellam RM (2011) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332:1548–1551CrossRefGoogle Scholar
  374. Guo W, Eiler JM (2007) Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochim Cosmochim Acta 71:5565–5575CrossRefGoogle Scholar
  375. Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Phys 101:37–47CrossRefGoogle Scholar
  376. Haack U, Hoefs J, Gohn E (1982) Constraints on the origin of Damaran granites by Rb/Sr and δ18O data. Contrib Mineral Petrol 79:279–289CrossRefGoogle Scholar
  377. Hackley KC, Anderson TF (1986) Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region. Geochim Cosmochim Acta 50:703–1713CrossRefGoogle Scholar
  378. Hahm D, Hilton DR, Castillo PR, Hawkins JW, Hanan BB, Hauri EH (2012) An overview of the volatile systematics of the Lau Basin—resolving the effects of source variation, magmatic degassing and crustal contamination. Geochim Cosmochim Acta 85:88–113CrossRefGoogle Scholar
  379. Haimson M, Knauth LP (1983) Stepwise fluorination-a useful approach for the isotopic analysis of hydrous minerals. Geochim Cosmochim Acta 47:1589–1595CrossRefGoogle Scholar
  380. Halbout J, Robert F, Javoy M (1990) Hydrogen and oxygen isotope compositions in kerogen from the Orgueil meteorite: clues to a solar origin. Geochim Cosmochim Acta 54:1453–1462CrossRefGoogle Scholar
  381. Hallis LJ, Anand M, Greenwood RC, Miller MF, Franchi IA, Russell SS (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim Cosmochim Acta 74:6885–6899CrossRefGoogle Scholar
  382. Hallis LJ, Huss GR, Nagashima K, Taylor GJ, Halldorsson SA, Hilton DR, Mottl MJ, Meech KJ (2015) Evidence for primordial water in Earth, s deep mantle. Science 350:795–797CrossRefGoogle Scholar
  383. Halverson GP, Poitrasson F, Hoffman PE, Nedelec A, Montel JM, Kirby J (2011) Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth Planet Sci Lett 309:100–112CrossRefGoogle Scholar
  384. Hamza MS, Epstein S (1980) Oxygen isotope fractionation between oxygen of different sites in hydroxyl-bearing silicate minerals. Geochim Cosmochim Acta 44:173–182CrossRefGoogle Scholar
  385. Han X, Guo Q, Strauss H, Liu C, Hu J, Guo Z, Wei R, Peters M, Tian L, Kong J (2017) Multiple sulfur isotope constraints on sources and formation processes of sulfate in Beijing PM2.5 aerosol. Environ Sci Tech 51:7794–7803CrossRefGoogle Scholar
  386. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contr Mineral Petrol 120:95–114CrossRefGoogle Scholar
  387. Harmon RS, Hoefs J, Wedepohl KH (1987) Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.-Germany. Contr Mineral Petrol 95:350–369CrossRefGoogle Scholar
  388. Harte B, Otter M (1992) Carbon isotope measurements on diamonds. Chem Geol 101:177–183Google Scholar
  389. Hartmann M, Nielsen H (1969) δ34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol Rundsch 58:621–655CrossRefGoogle Scholar
  390. Hauri EH, Wang J, Pearson DG, Bulanova GP (2002) Microanalysis of δ13C, δ15N and N abundances in diamonds by secondary ion mass spectrometry. Chem Geol 185:149–163CrossRefGoogle Scholar
  391. Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in melrt inclusions. Science 333:213–215CrossRefGoogle Scholar
  392. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  393. Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Reviews in mineralogy and geochemistry, vol 43. pp 225–277CrossRefGoogle Scholar
  394. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Phil Trans R Soc B 361:931–950CrossRefGoogle Scholar
  395. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic chemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution, chap 5. Princeton University Press, Princeton, pp 93–132Google Scholar
  396. Hayes JM, Popp BN, Takigiku R, Johnson MW (1989) An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochim Cosmochim Acta 53:2961–2972CrossRefGoogle Scholar
  397. Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125CrossRefGoogle Scholar
  398. Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19:441–444CrossRefGoogle Scholar
  399. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:943–954CrossRefGoogle Scholar
  400. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  401. Helman Y, Barkan E, Eisenstadt D, Luz B, Kaplan A (2005) Fractionation of the three stable oxygen isotopes by oxygen producing and consuming reactions in photosynthetic organisms. Plant Phys 2005:2292–2298CrossRefGoogle Scholar
  402. Hendy CH, Wilson AT (1968) Paleoclimatic data from speleothems. Nature 219:48–51CrossRefGoogle Scholar
  403. Heraty LJ, Fuller ME, Huang L, Abrajano T, Sturchio NC (1999) Isotopic fractionation of carbon and chlorine by microbial degradation of dichlormethane. Org Geochem 30:793–799CrossRefGoogle Scholar
  404. Herwartz D, Pack A, Friedrichs B, Bischoff A (2014) Identification of the giant impactor Theia in lunar rocks. Science 344:1146–1150CrossRefGoogle Scholar
  405. Herwartz D, Pack A, Krylov D, Xiao Y, Muehlenbachs K, Sengupta S, Di Rocco T (2015) Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. PNAS 112:5337–5341CrossRefGoogle Scholar
  406. Higgins JA, Schrag DP (2012) Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet Sci Lett 357–358:386–396CrossRefGoogle Scholar
  407. Hin RC, Schmidt MW, Bourdon B (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1GPA and 1250–1300 °C and its cosmochemical consequences. Geochim Cosmochim Acta 93:164–181CrossRefGoogle Scholar
  408. Hin RC, Burkhardt C, Schmidt MW, Bourdon B (2013) Experimental evidence for Mo isotope fractionation between metal and silicate liquids. Earth Planet Sci Lett 379:38–48CrossRefGoogle Scholar
  409. Hin RC, Fitoussi C, Schmidt MW, Bourdon B (2014) Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth Planet Sci Lett 387:55–66CrossRefGoogle Scholar
  410. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefGoogle Scholar
  411. Hitchon B, Friedman I (1969) Geochemistry and origin of formation waters in the western Canada sedimentary basin. 1. Stable isotopes of hydrogen and oxygen. Geochim Cosmochim Acta 33:1321–1349CrossRefGoogle Scholar
  412. Hitchon B, Krouse HR (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada. III. Stable isotopes of oxygen, carbon and sulfur. Geochim Cosmochim Acta 36:1337–1357CrossRefGoogle Scholar
  413. Hoag KJ, Still CJ, Fung IY, Boering KA (2005) Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys Res Lett 32:L02802CrossRefGoogle Scholar
  414. Hoefs J (1970) Kohlenstoff-und Sauerstoff-Isotopenuntersuchungen an Karbonatkonkretionen und umgebendem Gestein. Contrib Mineral Petrol 27:66–79CrossRefGoogle Scholar
  415. Hoefs J (1992) The stable isotope composition of sedimentary iron oxides with special reference to Banded Iron Formations. In: Isotopic signatures and sedimentary records. Lecture Notes in Earth Science, vol 43. Springer, Berlin, pp 199–213Google Scholar
  416. Hoefs J, Emmermann R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contrib Mineral Petrol 83:320–329CrossRefGoogle Scholar
  417. Hoefs J, Sywall M (1997) Lithium isotope composition of quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690CrossRefGoogle Scholar
  418. Hoering T (1975) The biochemistry of the stable hydrogen isotopes. Carnegie Inst Washington Yearb 74:598Google Scholar
  419. Hoernes S, Van Reenen DC (1992) The oxygen isotopic composition of granulites and retrogressed granulites from the Limpopo Belt as a monitor of fluid-rock interaction. Precambrian Res 55:353–364CrossRefGoogle Scholar
  420. Hoffman JH, Hodges RR, McElroy MB, Donahue TM, Kolpin M (1979) Composition and structure of the Venus atmosphere: results from Pioneer Venus. Science 205:49–52CrossRefGoogle Scholar
  421. Hoffman PE, Kaufman AJ, Halverson GP, Schrag DP (1998) Neoproterozoic snowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  422. Hofmann ME, Horvath B, Pack A (2012) Triple oxygen isotope equilibrium fractionation between carbon dioxide and water. Earth Planet Sci Lett 319–320:159–164CrossRefGoogle Scholar
  423. Hofstetter TB, Scharzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42:7737–7743CrossRefGoogle Scholar
  424. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Review on Mineral, vol 30, pp 187–230Google Scholar
  425. Holmden C (2009) Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston basin: Implications for subsurface dolomitization and local Ca cycling. Chem Geol 268:180–188CrossRefGoogle Scholar
  426. Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408CrossRefGoogle Scholar
  427. Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135CrossRefGoogle Scholar
  428. Homoky WB, Severmann S, Mills RA, Statham PJ, Fones GR (2009) Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments. Geology 37:751–754CrossRefGoogle Scholar
  429. Homoky WB, John SG, Conway TM, Mills RA (2013) Distinct iron isotope signatures and supply from marine sediment solution. Nat Commun 4,
  430. Hoppe P, Zinner E (2000) Presolar dust grains from meteorites and their stellar sources. J Geophys Res Space Phys 105:10371–10385CrossRefGoogle Scholar
  431. Horita J (1989) Stable isotope fractionation factors of water in hydrated salt minerals. Earth Planet Sci Lett 95:173–179CrossRefGoogle Scholar
  432. Horita J (2014) Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochim Cosmochim Acta 129:111–124CrossRefGoogle Scholar
  433. Horita J, Berndt ME (1999) Abiogenic methane formation and isotope fractionation under hydrothermal conditions. Science 285:1055–1057CrossRefGoogle Scholar
  434. Horita J, Cole DR, Wesolowski DJ (1995) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350 °C. Geochim Cosmochim Acta 59:1139–1151CrossRefGoogle Scholar
  435. Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547CrossRefGoogle Scholar
  436. Horita J, Cole DR, Polyakov VB, Driesner T (2002a) Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta 66:3769–3788CrossRefGoogle Scholar
  437. Horita J, Zimmermann H, Holland HD (2002b) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochim Cosmochim Acta 66:3733–3756CrossRefGoogle Scholar
  438. Horn I, von Blanckenburg F, Schoenberg R, Steinhöfel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70:3677–3688CrossRefGoogle Scholar
  439. Horvath B, Hofmann M, Pack A (2012) On the triple oxygen isotope composition of carbon dioxide from some combustion processes. Geochim Cosmochim Acta 95:160–168CrossRefGoogle Scholar
  440. Hu S, Lin Y, Zhang J, Hao J, Feng L, Xu L, Yang W, Yang J (2014) NanoSIMS analysis of apatite and melt inclusions in the GRV 020090 Martian meteorite: hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim Cosmochim Acta 140:321–333CrossRefGoogle Scholar
  441. Hu Y, Teng FZ, Zhang HF, Xiao Y, Su BX (2016) Metasomatism-induced magnesium isotopic heterogeneity: evidence from pyroxenites. Geochim Cosmochim Acta 185:88–111CrossRefGoogle Scholar
  442. Huang L, Strurchio NC, Abrajano T, Heraty LJ, Holt BD (1999) Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem 30:777–785CrossRefGoogle Scholar
  443. Huang B, Xiao X, Hu Z, Yi P (2005a) Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai basin, offshore South China. Org Geochem 36:1689–1702CrossRefGoogle Scholar
  444. Huang Y, Wang Y, Alexandre M, Lee T, Rose-Petruck C, Fuller M, Pizzarello S (2005b) Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous chondrites. Geochim Cosmochim Acta 69:1073–1084CrossRefGoogle Scholar
  445. Huang KJ, Shen B, Lang XG, Tang WB, Peng Y, Ke S, Kaufman AJ, Ma HR, Li FB (2015) Magnesium isotope compositions of the Mesoproterozoic dolostones: implications for Mg isotope systematics of marine carbonates. Geochim Cosmochim Acta 164:333–351CrossRefGoogle Scholar
  446. Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660CrossRefGoogle Scholar
  447. Hui H et al (2017) A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet Sci Lett 473:14–23CrossRefGoogle Scholar
  448. Hulston JR (1977) Isotope work applied to geothermal systems at the Institute of Nuclear Sciences, New Zealand. Geothermics 5:89–96CrossRefGoogle Scholar
  449. Hulston JR, Thode HG (1965) Variations in the 33S, 34S and 36S contents of meteorites and their relations to chemical and nuclear effects. J Geophys Res 70:3475–3484CrossRefGoogle Scholar
  450. Huntington KW, Wernicke BP, Eiler JM (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29:TC3005.
  451. Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669CrossRefGoogle Scholar
  452. Hüri E, Marty B (2015) Nitrogen isotope variations in the solar system. Nat Geosci 8:515–522CrossRefGoogle Scholar
  453. Iacumin P, Bocherens H, Marriotti A, Longinelli A (1996) Oxygen isotope analysis of coexisting carbonate and phosphate in biogenic apatite; a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6CrossRefGoogle Scholar
  454. Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a Femtosecond La-MC-ICP-MS. Econ Geol 106:307–316CrossRefGoogle Scholar
  455. Ionov DA, Hoefs J, Wedepohl KH, Wiechert U (1992) Contents and isotopic composition of sulfur in ultramafic xenoliths from Central Asia. Earth Planet Sci Lett 111:269–286CrossRefGoogle Scholar
  456. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for the source of diagenetic carbonate during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  457. Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa trough back arc basin, southwest of Japan. Chem Geology 123:1–15CrossRefGoogle Scholar
  458. Jaffrés JB, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122CrossRefGoogle Scholar
  459. James DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Ann Rev Earth Planet Sci 9:311–344CrossRefGoogle Scholar
  460. James AT (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. Am Assoc Petrol Geol Bull 67:1167–1191Google Scholar
  461. James AT (1990) Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. Am Assoc Petrol Geol Bull 74:1441–1458Google Scholar
  462. Jaouen K, Pons ML, Balter V (2013) Iron, copper and zinc isotopic fractionation up mammal trophic chains. Earth Planet Sci Lett 374:164–172CrossRefGoogle Scholar
  463. Jaouen K, Beasley M, Schoeninger M, Hublin JJ, Richards MP (2016) Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi For a, Kenya). Sci reports 6:26281CrossRefGoogle Scholar
  464. Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:462–464CrossRefGoogle Scholar
  465. Jasper JP, Hayes JM, Mix AC, Prahl FG (1994) Photosynthetic fractionation of C-13 and concentrations of dissolved CO2 in the central equatorial Pacific. Paleoceanography 9:781–798CrossRefGoogle Scholar
  466. Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geology 57:41–62CrossRefGoogle Scholar
  467. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218CrossRefGoogle Scholar
  468. Jeffrey AW, Pflaum RC, Brooks JM, Sackett WM (1983) Vertical trends in particulate organic carbon 13C/12C ratios in the upper water column. Deep Sea Res 30:971–983CrossRefGoogle Scholar
  469. Jenden PD, Kaplan IR, Poreda RJ, Craig H (1988) Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim Cosmochim Acta 52:851–861CrossRefGoogle Scholar
  470. Jenden PD, Drazan DJ, Kapan IR (1993) Mixing of thermogenic natural gases in northern Appalachian Basin. Am Assoc Petrol Geol Bull 77:980–998Google Scholar
  471. Jendrzejewski N, Eggenkamp HGM, Coleman ML (2001) Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl Geochem 16:1021–1031CrossRefGoogle Scholar
  472. Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosys 11:Q03004CrossRefGoogle Scholar
  473. Jiang J, Clayton RN, Newton RC (1988) Fluids in granulite facies metamorphism: a comparative oxygen isotope study on the South India and Adirondack high grade terrains. J Geol 96:517–533CrossRefGoogle Scholar
  474. Joachimski M, van Geldern R, Breisig S, Buggisch W, Day J (2004) Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. Int J Earth Sci 93:542–553CrossRefGoogle Scholar
  475. Joachimski M, Simon L, van Geldern R, Lecuyer C (2005) Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochim Cosmochim Acta 69:4035–4044CrossRefGoogle Scholar
  476. Joachimski MM, Breisig S, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett 284:599–609CrossRefGoogle Scholar
  477. Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198CrossRefGoogle Scholar
  478. Johnsen SJ, Dansgaard W, White JW (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus 41B:452–468CrossRefGoogle Scholar
  479. Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup N, Hammer CU, Tauber H (1995) The Eem stable isotope record along the GRIP ice core and ist interpretation. Quat Res 43:117–124CrossRefGoogle Scholar
  480. Johnson DG, Jucks KW, Traub WA, Chance KV (2001) Isotopic composition of stratospheric water vapour: measurements and photochemistry. J Geophys Res 106D:12211–12217CrossRefGoogle Scholar
  481. Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fraction between Fe(III) and Fe(II) in aqueous solutions. Earth Planet Sci Lett 195:141–153CrossRefGoogle Scholar
  482. Johnson CM, Beard BL, Beukes NJ, Klein C, O‘ Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe-isotope studies of banded iron formations from the Transvaal craton. Contr Mineral Petrol 114:523–547CrossRefGoogle Scholar
  483. Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Ann Rev Earth Planet Sci 36:457–493CrossRefGoogle Scholar
  484. Johnston DT (2011) Multiple sulfur isotopes and the evolution of Earth, s surface sulfur cycle. Earth Sci Rev 106:161–183CrossRefGoogle Scholar
  485. Jones HD, Kesler SE, Furman FC, Kyle JR (1996) Sulfur isotope geochemistry of southern Appalachian Mississippi Valley-type depopsits. Econ Geol 91:355–367CrossRefGoogle Scholar
  486. Jǿrgensen BB, Böttcher MA, Lüschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68:2095–2118CrossRefGoogle Scholar
  487. Jouzel J, Merlivat L, Roth E (1975) Isotopic study of hail. J Geophys Res 80:5015–5030CrossRefGoogle Scholar
  488. Jouzel J, Merlivat L, Lorius C (1982) Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature 299:688–691CrossRefGoogle Scholar
  489. Jouzel J, Lorius C, Petit JR, Barkov NI, Kotlyakov VM, Petrow VM (1987) Vostok ice core: a continuous isotopic temperature record over the last climatic cycle (160,000 years). Nature 329:403–408CrossRefGoogle Scholar
  490. Juranek LW, Quay PD (2010) Basin-wide photosynthetic production rates in the subtropical and tropical Pacific Ocean determined from dissolved oxygen isotope ratio measurements. Global Biogeochem Cycles 24:GB2006. Scholar
  491. Kampschulte A, Strauss H (2004) The sulfur isotope evolution of Phanerozoic seawater based on the analyses of sructurally substituted sulfate in carbonates. Chem Geol 204:255–280CrossRefGoogle Scholar
  492. Kaplan IR, Hulston JR (1966) The isotopic abundance and content of sulfur in meteorites. Geochim Cosmochim Acta 30:479–496CrossRefGoogle Scholar
  493. Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J Gen Microbiol 34:195–212CrossRefGoogle Scholar
  494. Kaufman AJ, Knoll GM (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49CrossRefGoogle Scholar
  495. Kaye J (1987) Mechanisms and observations for isotope fractionation of molecular species in planetary atmospheres. Rev Geophysics 25:1609–1658CrossRefGoogle Scholar
  496. Keeling CD (1958) The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334CrossRefGoogle Scholar
  497. Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298CrossRefGoogle Scholar
  498. Keeling CD, Mook WG, Tans P (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123CrossRefGoogle Scholar
  499. Keeling CD, Carter AF, Mook WG (1984) Seasonal, latitudinal and secular variations in the abundance and isotopic ratio of atmospheric carbon dioxide. II. Results from oceanographic cruises in the tropical Pacific Ocean. J Geophys Res 89:4615–4628CrossRefGoogle Scholar
  500. Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TR, Heimann M, Mook WG, Roeloffzen H (1989) A three dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observational data. Geophys Monogr 55:165–236Google Scholar
  501. Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670CrossRefGoogle Scholar
  502. Kelly WC, Rye RO, Livnat A (1986) Saline minewaters of the Keweenaw Peninsula, Northern Michigan: their nature, origin and relation to similar deep waters in Precambrian crystalline rocks of the Canadian Shield. Am J Sci 286:281–308CrossRefGoogle Scholar
  503. Kelly J, Fu B, Kita N, Valley J (2007) Optically continuous silcrete quartz cements in the St. Peter sandstone. Geochim Cosmochim Acta 71:3812–3832CrossRefGoogle Scholar
  504. Kelts K, McKenzie JA (1982) Diagenetic dolomite formation in quaternary anoxic diatomaceous muds of DSDP Leg 64, Gulf of California. Initial Rep DSDP 64:553–569Google Scholar
  505. Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986CrossRefGoogle Scholar
  506. Kendall B, Dahl TW, Anbar AD (2017) The stable isotope geochemistry of molybdenum. Rev Mineral Geochem 82:683–732CrossRefGoogle Scholar
  507. Kennicutt MC, Barker C, Brooks JM, De Freitaas DA, Zhu GH (1987) Selected organic matter indicators in the Orinoco, Nile and Changjiang deltas. Org Geochem 11:41–51CrossRefGoogle Scholar
  508. Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191CrossRefGoogle Scholar
  509. Kerrich R, Rehrig W (1987) Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona. Geology 15:58–62CrossRefGoogle Scholar
  510. Kerrich R, Latour TE, Willmore L (1984) Fluid participation in deep fault zones: evidence from geological, geochemical and to 18O/16O relations. J Geophys Res 89:4331–4343CrossRefGoogle Scholar
  511. Kerridge JF (1983) Isotopic composition of carbonaceous-chondrite kerogen: evidence for an interstellar origin of organic matter in meteorites. Earth Planet Sci Lett 64:186–200CrossRefGoogle Scholar
  512. Kerridge JF, Haymon RM, Kastner M (1983) Sulfur isotope systematics at the 21°N site, East Pacific Rise. Earth Planet Sci Lett 66:91–100CrossRefGoogle Scholar
  513. Kerridge JF, Chang S, Shipp R (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim Cosmochim Acta 51:2527–2540CrossRefGoogle Scholar
  514. Kharaka YK, Berry FAF, Friedman I (1974) Isotopic composition of oil-field brines from Kettleman North Dome, California and their geologic implications. Geochim Cosmochim Acta 37:1899–1908CrossRefGoogle Scholar
  515. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio formation following CO2 injection: implications to the storage of greenhouse gases in sedimentary basins. Geology 34:577–580CrossRefGoogle Scholar
  516. Kiczka M, Wiederhold JG, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during Fe uptake and translocation in Alpine plants. Environ Sci Technol 44:6144–6150CrossRefGoogle Scholar
  517. Kim KR, Craig H (1990) Two isotope characterization of N2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347:58–61CrossRefGoogle Scholar
  518. Kim KR, Craig H (1993) Nitrogen-15 and oxygen-18 characteristics of nitrous oxide. Science 262:1855–1858CrossRefGoogle Scholar
  519. King PL, McLennan SM (2009) Sulfur on Mars. Elements 6:107–112CrossRefGoogle Scholar
  520. Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR (1991) The application of C-isotope measurements to the identification of the sources of C in diamonds. Appl Geochem 6:477–494CrossRefGoogle Scholar
  521. Kloppmann W, Girard JP, Négrel P (2002) Exotic stable isotope composition of saline waters and brines from the crystalline basement. Chem Geol 184:49–70CrossRefGoogle Scholar
  522. Knauth LP (1988) Origin and mixing history of brines, Palo Duro Basin, Texas, USA. Appl Geochem 3:455–474CrossRefGoogle Scholar
  523. Knauth LP, Beeunas MA (1986) Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim Cosmochim Acta 50:419–433CrossRefGoogle Scholar
  524. Knauth LP, Lowe DR (1978) Oxygen isotope geochemistry of cherts from the Onverwacht group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of chert. Earth Planet Sci Lett 41:209–222CrossRefGoogle Scholar
  525. Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321:832–838CrossRefGoogle Scholar
  526. Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829CrossRefGoogle Scholar
  527. Kohn MJ (1999) Why most “dry” rocks should cool “wet”. Am Mineral 84:570–580CrossRefGoogle Scholar
  528. Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48:455–488CrossRefGoogle Scholar
  529. Kohn MJ, Valley JW (1994) Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, USA. Geochim Cosmochim Acta 58:5551–5566CrossRefGoogle Scholar
  530. Kohn MJ, Valley JW, Elsenheimer D, Spicuzza M (1993) Oxygen isotope zoning in garnet and staurolite: evidence for closed system mineral growth during regional metamorphism. Am Mineral 78:988–1001Google Scholar
  531. Kohn MJ, Riciputi LR, Stakes D, Orange DL (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonzation? Am Mineral 83:1454–1486CrossRefGoogle Scholar
  532. Kolodny Y, Kerridge JF, Kaplan IR (1980) Deuterium in carbonaceous chondrites. Earth Planet Sci Lett 46:149–153CrossRefGoogle Scholar
  533. Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:393–404CrossRefGoogle Scholar
  534. Kolodny Y, Luz B, Sander M, Clemens WA (1996) Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeo, Palaeo, Palaeoecol 126:161–171CrossRefGoogle Scholar
  535. Kool DM, Wrage N, Oenema O, Harris D, Van Groenigen JW (2009) The 18O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Commun Mass Spectrom 23:104–108CrossRefGoogle Scholar
  536. Krishnamurthy RV, Epstein S, Cronin JR, Pizzarello S, Yuen GU (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim Cosmochim Acta 56:4045–4058CrossRefGoogle Scholar
  537. Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res 32:57–84CrossRefGoogle Scholar
  538. Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175:54–55CrossRefGoogle Scholar
  539. Kroopnick P, Weiss RF, Craig H (1972) Total CO2, 13C and dissolved oxygen-18O at Geosecs II in the North Atlantic. Earth Planet Sci Lett 16:103–110CrossRefGoogle Scholar
  540. Krouse HR, Case JW (1983) Sulphur isotope abundances in the environment and their relation to long term sour gas flaring, near Valleyview, Alberta. Final report, Research Management Division, University Alberta RMD Rep 83/18Google Scholar
  541. Krouse HR, Viau CA, Eliuk LS, Ueda A, Halas S (1988) Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333:415–419CrossRefGoogle Scholar
  542. Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur and strontium isotopes. Am J Sci 289:390–410CrossRefGoogle Scholar
  543. Kump LR (2005) Ironing out biosphere oxidation. Science 307:1058–1059CrossRefGoogle Scholar
  544. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198CrossRefGoogle Scholar
  545. Kvenvolden KA (1995) A review of the geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008CrossRefGoogle Scholar
  546. Kyser TK, O’Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:2123–2134CrossRefGoogle Scholar
  547. Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23CrossRefGoogle Scholar
  548. Kyser TK, O’Neil JR, Carmichael ISE (1982) Genetic relations among basic lavas and mantle nodules. Contrib Mineral Petrol 81:88–102CrossRefGoogle Scholar
  549. Kyser TK, O’ Neil JR, Carmichael ISE (1986) Reply to “Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O‘ Neil-Carmichael geothermometer.” Contr Mineral Petrol 93:120–123Google Scholar
  550. Labeyrie LD, Juillet A (1982) Oxygen isotope exchangeability of diatom valve silica; interpretation and consequences for paleoclimatic studies. Geochim Cosmochim Acta 46:967–975CrossRefGoogle Scholar
  551. Labeyrie LD, Duplessy JC, Blanc PL (1987) Deep water formation and temperature variations over the last 1250,00 years. Nature 327:477–482CrossRefGoogle Scholar
  552. Labidi J, Catigny P, Birck JL, Assayag N, Bourrand JJ (2012) Determination of multiple sulphur isotopes in glasses: a reappraisal of the MORB δ34S. Chem Geol 334:189–198CrossRefGoogle Scholar
  553. Labidi J, Cartigny P, Moreira M (2013) Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–211CrossRefGoogle Scholar
  554. Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S, 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67CrossRefGoogle Scholar
  555. Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432CrossRefGoogle Scholar
  556. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Concepts and models of dolomitization. Soc Econ Paleontol Min Spec Publ 28:87–110Google Scholar
  557. Landais A, Barkan E, Luz B (2008) Record of δ18O and 17O excess in ice from Vostok, Antarctica during the last 150000 years. Geophys Res Lett 35:L02709Google Scholar
  558. Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science 123:574–576CrossRefGoogle Scholar
  559. Lau KV, Maher K et al (2017) The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chem Geol 471:13–37CrossRefGoogle Scholar
  560. Lawrence JR (1989) The stable isotope geochemistry of deep-sea pore water. In: Handbook of environmental isotope geochemistry, vol 3. Elsevier, Amsterdam, pp 317–356Google Scholar
  561. Lawrence JR, Gieskes JM (1981) Constraints on water transport and alteration in the oceanic crust from the isotopic composition of the pore water. J Geophys Res 86:7924–7934CrossRefGoogle Scholar
  562. Lawrence JR, Taviani M (1988) Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: methane and hydrogen from the mantle? Geochim Cosmochim Acta 52:2077–2083CrossRefGoogle Scholar
  563. Lawrence JR, Taylor HP (1971) Deuterium and oxygen-18 correlation: clay minerals and hydroxides in quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003CrossRefGoogle Scholar
  564. Lawrence JR, White JWC (1991) The elusive climate signal in the isotopic composition of precipitation. In: Stable isotope geochemistry: a tribute to Samuel Epstein. Special Publication, The Geochemical Society vol 3, pp 169–185Google Scholar
  565. Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and CO2aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59:1131–1138CrossRefGoogle Scholar
  566. Lazar C, Young ED, Manning CE (2012) Experimental determination of equilibrium nickel isotope fractionation between metal and silicate from 500 °C to 950 °C. Geochim Cosmochim Acta 86:276–395CrossRefGoogle Scholar
  567. Leclerc AJ, Labeyrie LC (1987) Temperature dependence of oxygen isotopic fractionation between diatom silica and water. Earth Planet Sci Lett 84:69–74CrossRefGoogle Scholar
  568. Lécuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55CrossRefGoogle Scholar
  569. Leder JL, Swart PK, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochim Cosmochim Acta 60:2857–2870CrossRefGoogle Scholar
  570. Lemarchand D, Gaillardet J, Lewin E, Allegre CJ (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954CrossRefGoogle Scholar
  571. Lemarchand D, Gaillardet J, Lewin E, Allègre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140CrossRefGoogle Scholar
  572. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–831CrossRefGoogle Scholar
  573. Lepot K, Williford KH, Ushikubo T, Sugitani K, Mimura K, Spicuzza MJ, Valley JW (2013) Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures. Geochim Cosmochim Acta 112:66–86CrossRefGoogle Scholar
  574. Leshin LA, Epstein S, Stolper EM (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochim Cosmochim Acta 60:2635–2650CrossRefGoogle Scholar
  575. Leshin LA, McKeegan KD, Carpenter PK, Harvey RP (1998) Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH 84001. Geochim Cosmochim Acta 62:3–13CrossRefGoogle Scholar
  576. Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488–490CrossRefGoogle Scholar
  577. Lewan MD (1983) Effects of thermal maturation on stable carbon isotopes as determined by hydrous pyrolysis of Woodford shale. Geochim Cosmochim Acta 47:1471–1480CrossRefGoogle Scholar
  578. Li L, Cartigny P, Ader M (2009) Kinetic nitrogen isotope fraction associated with thermal decomposition of NH3: experimental results and potential applications to trace the origin of N2 in natural gas and hydrothermal systems. Geochim Cosmochim Acta 73:6282–6297CrossRefGoogle Scholar
  579. Li W, Jackson SE, Pearson NJ, Graham S (2010a) Copper isotope zonation in the Northparkes porphyry Cu–Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096CrossRefGoogle Scholar
  580. Li W-Y, Teng F-Z, Ke S, Rudnick R, Gao S, Wu F-Y, Chappell B (2010b) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884CrossRefGoogle Scholar
  581. Liotta M, Rizzo A, Paonita A, Caracausi A, Martelli M (2012) Sulfur isotopic compositions of fumarolic and plume gases at Mount Etna (Italy) and inferences on their magmatic source. Geochem Geophys Geosys 13(5).
  582. Lister GS, Kelts K, Chen KZ, Yu JQ, Niessen F (1991) Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeo, Palaeo, Palaeoecology 84:141–162CrossRefGoogle Scholar
  583. Little SH, Vance D, Walker-Brown C, Landing WM (2014) The oceanic mass balance of copper and zinc isotopes, investigated by analysis by their in puts and outputs to ferromanganese oxide sediments. Geochim Cosmochim Acta 125:673–693CrossRefGoogle Scholar
  584. Liu Y, Spicuzza MJ, Craddock PR, Day JM, Valley JW, Dauphas N, Taylor LA (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262CrossRefGoogle Scholar
  585. Liu SA, Teng FZ, Yang W, Wu FY (2011) High temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth Planet Sci Lett 308:131–140CrossRefGoogle Scholar
  586. Liu J, Dauphas N, Roskosz M, Hu MY, Hong Y, Bi W, Zhao J, Alp EE, Hu JY, Liu JY (2017) Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nature Commun 8:14377CrossRefGoogle Scholar
  587. Lloyd MR (1967) Oxygen-18 composition of oceanic sulfate. Science 156:1228–1231CrossRefGoogle Scholar
  588. Lloyd MR (1968) Oxygen isotope behavior in the sulfate-water system. J Geophys Res 73:6099–6110CrossRefGoogle Scholar
  589. Longinelli A (1966) Ratios of oxygen-18: oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature 211:923–926CrossRefGoogle Scholar
  590. Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390CrossRefGoogle Scholar
  591. Longinelli A, Bartelloni M (1978) Atmospheric pollution in Venice, Italy, as indicated by isotopic analyses. Water Air Soil Poll 10:335–341CrossRefGoogle Scholar
  592. Longinelli A, Craig H (1967) Oxygen-18 variations in sulfate ions in sea-water and saline lakes. Science 156:56–59CrossRefGoogle Scholar
  593. Longinelli A, Edmond JM (1983) Isotope geochemistry of the Amazon basin. A reconnaissance. J Geophys Res 88:3703–3717CrossRefGoogle Scholar
  594. Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376CrossRefGoogle Scholar
  595. Longstaffe FJ (1989) Stable isotopes as tracers in clastic diagenesis. In: Hutcheon IE (ed) Short course in burial diagenesis, Mineralogical Association of Canada short course series, vol 15, pp 201–277Google Scholar
  596. Longstaffe FJ, Schwarcz HP (1977) 18O/16O of Archean clastic metasedimentary rocks: a petrogenetic indicator for Archean gneisses? Geochim Cosmochim Acta 41:1303–1312CrossRefGoogle Scholar
  597. Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevich YS, Kotlyakov VM (1985) A 150,000 year climatic record from Antarctic ice. Nature 316:591–596CrossRefGoogle Scholar
  598. Lücke A, Moschen R, Schleser G (2005) High-temperature carbon reduction of silica: a novel approach for oxygen isotope analysis of biogenic opal. Geochim Cosmochim Acta 69:1423–1433CrossRefGoogle Scholar
  599. Luz B, Barkan E (2000) Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028–2031CrossRefGoogle Scholar
  600. Luz B, Barkan E (2005) The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta 69:1099–1110CrossRefGoogle Scholar
  601. Luz B, Barkan E (2010) Variations of 17O/16O and 18O/16O in meteoric waters. Geochim Cosmochim Acta 74:6276–6286CrossRefGoogle Scholar
  602. Luz B, Kolodny Y (1985) Oxygen isotope variations in phosphate of biogenic apatites, IV: mammal teeth and bones. Earth Planet Sci Lett 75:29–36CrossRefGoogle Scholar
  603. Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta 48:1689–1693CrossRefGoogle Scholar
  604. Luz B, Cormie AB, Schwarcz HP (1990) Oxygen isotope variations in phosphate of deer bones. Geochim Cosmochim Acta 54:1723–1728CrossRefGoogle Scholar
  605. Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–550CrossRefGoogle Scholar
  606. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth, s early ocean and atmosphere. Nature 506:307–315CrossRefGoogle Scholar
  607. Macris CA, Manning CE, Young ED (2015) Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochim Cosmochim Acta 154:168–185CrossRefGoogle Scholar
  608. Mader M, Schmidt C, van Geldern R, Barth JA (2017) Dissolved oxygen in water and its stable isotope effects: a review. Chem Geol 473:10–21CrossRefGoogle Scholar
  609. Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope composition of the moon and terrestrial planets. Earth Planet Sci Lett 243:336–353CrossRefGoogle Scholar
  610. Magyar PM, Orphan VJ, Eiler JM (2016) Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry. Rapid Comm Mass Spectr 30:1923–1940CrossRefGoogle Scholar
  611. Mahaffy PR, Webster CR et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science 341:263–266CrossRefGoogle Scholar
  612. Maher K, Larson P (2007) Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru. Econ Geol 102:225–237CrossRefGoogle Scholar
  613. Mandeville CW, Webster JD, Tappen C, Taylor BE, Timbal A, Sasaki A, Hauri E, Bacon CR (2009) Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake. Oregon. Geochim Cosmochim Acta 73:2978–3012CrossRefGoogle Scholar
  614. Mane P, Hervig R, Wadhwa M, Garvie LA, Balta JB, McSween HY (2016) Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteor Planet Sci 51:2073–2091CrossRefGoogle Scholar
  615. Marin J, Chaussidon M, Robert F (2010) Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: assessments of diagenetic effects and implications for oceanic paleotemperature reconstructions. Geochim Cosmochim Acta 74:116–130CrossRefGoogle Scholar
  616. Marin-Carbonne J, Chaussidon M, Boiron MC, Robert F (2011) A combined in situ oxygen, silicon and fluid inclusion study of a chert sample from Onverwacht Group (3.35 Ga, South Africa): new constraints on fluid circulation. Chem Geol 286:59–71Google Scholar
  617. Marin-Carbonne J, Chaussidon M, Robert F (2012) Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: implications for paleo-temperature reconstructions. Geochim Cosmochim Acta 92:129–147CrossRefGoogle Scholar
  618. Marin-Carbonne J, Robert F, Chaussidon M (2014a) The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures? Precam Res 247:223–234CrossRefGoogle Scholar
  619. Marin-Carbonne J et al (2014b) Coupled Fe and S isotope variatiions in pyrite nodules from Archaen shale. Earth Planet Sci Lett 392:67–79CrossRefGoogle Scholar
  620. Markl G, Lahaye Y, Schwinn G (2006a) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228CrossRefGoogle Scholar
  621. Markl G, von Blanckenburg F, Wagner T (2006b) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030CrossRefGoogle Scholar
  622. Marowsky G (1969) Schwefel-, Kohlenstoff-und Sauerstoffisotopenuntersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung. Contrib Mineral Petrol 22:290–334CrossRefGoogle Scholar
  623. Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PA, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Acta 207:102–138CrossRefGoogle Scholar
  624. Martin E, Bindeman I (2009) Mass-independent isotopic signatures of volcanic sulfate from three supereuption ash deposits in Lake Tecopa, California. Earth Planet Sci Lett 282:102–114CrossRefGoogle Scholar
  625. Martin AP, Condon DJ, Prave AR, Lepland A (2013) A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli event). Earth Sci Rev 127:242–261CrossRefGoogle Scholar
  626. Martin JE, Vance D, Balter V (2015) Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112:430–435CrossRefGoogle Scholar
  627. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300,000 year chronostratigraphy. Quat Res 27:1–29CrossRefGoogle Scholar
  628. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313–314:56–66CrossRefGoogle Scholar
  629. Marty B, Humbert F (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet Sci Lett 152:101–112CrossRefGoogle Scholar
  630. Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar)in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633CrossRefGoogle Scholar
  631. Marty B, Chaussidon M, Wiens RC, Jurewicz Burnett DS (2011) A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332:1533–1536CrossRefGoogle Scholar
  632. Mason TFD et al (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187CrossRefGoogle Scholar
  633. Mason E, Edmonds M, Turchyn AV (2017) Remobilization of crustal carbon may dominate arc emissions. Science 357:290–294CrossRefGoogle Scholar
  634. Masson-Delmotte V, Jouzel J et al (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309:118–121CrossRefGoogle Scholar
  635. Mastalerz M, Schimmelmann A (2002) Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition. Org Geochem 33:921–931CrossRefGoogle Scholar
  636. Matheney RK, Knauth LP (1989) Oxygen isotope fractionation between marine biogenic silica and seawater. Geochim Cosmochim Acta 53:3207–3214CrossRefGoogle Scholar
  637. Mathur R, Dendas M, Titley S, Phillips A (2010) Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States. Econ Geol 105:1457–1467CrossRefGoogle Scholar
  638. Matsubaya O, Sakai H (1973) Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko-type mineralization. Geochem J 7:153–165CrossRefGoogle Scholar
  639. Matsuhisa Y (1979) Oxygen isotopic compositions of volcanic rocks from the east Japan island arcs and their bearing on petrogenesis. J Volcanic Geotherm Res 5:271–296CrossRefGoogle Scholar
  640. Matsumoto R (1992) Causes of the oxygen isotopic depletion of interstitial waters from sites 798 and 799, Japan Sea, Leg 128. Proc Ocean Drill Program, Sci Results 127(128):697–703Google Scholar
  641. Matsuo S, Friedman I, Smith GI (1972) Studies of quaternary saline lakes. I. Hydrogen isotope fractionation in saline minerals. Geochim Cosmochim Acta 36:427–435CrossRefGoogle Scholar
  642. Mattey DP, Carr RH, Wright IP, Pillinger CT (1984) Carbon isotopes in submarine basalts. Earth Planet Sci Lett 70:196–206CrossRefGoogle Scholar
  643. Mattey DP, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotites. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  644. Mauersberger K (1981) Measurement of heavy ozone in the stratosphere. Geophys Res Lett 8:935–937CrossRefGoogle Scholar
  645. Mauersberger K (1987) Ozone isotope measurements in the stratosphere. Geophys Res Letter 14:80–83CrossRefGoogle Scholar
  646. McCaig AM, Wickham SM, Taylor HP (1990) Deep fluid circulation in Alpine shear zones, Pyrenees, France: field and oxygen isotope studies. Contr Mineral Petrol 106:41–60CrossRefGoogle Scholar
  647. McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotope composition of amino acids in plankton. Ecology 83:2173–2180CrossRefGoogle Scholar
  648. McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84CrossRefGoogle Scholar
  649. McConnaughey T (1989a) 13C and 18O disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171CrossRefGoogle Scholar
  650. McConnaughey T (1989b) 13C and 18O disequilibrium in biological carbonates. I. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  651. McCorkle DC, Emerson SR (1988) The relationship between pore water isotopic composition and bottom water oxygen concentration. Geochim Cosmochim Acta 52:1169–1178CrossRefGoogle Scholar
  652. McCorkle DC, Emerson SR, Quay P (1985) Carbon isotopes in marine porewaters. Earth Planet Sci Lett 74:13–26CrossRefGoogle Scholar
  653. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  654. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Sci Rev 23:901–918CrossRefGoogle Scholar
  655. McGarry S, Bar-Matthews M, Matthews A, Vaks A, Schilman B, Ayalon A (2004) Constraints on hydrological and paleotemperature variations in the eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. Quat Sci Rev 23:919–934CrossRefGoogle Scholar
  656. McGregor ID, Manton SR (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079CrossRefGoogle Scholar
  657. McInerney FA, Wing SL (2011) The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate and biosphere with implications for the future. Ann Rev Earth Planet Sci 39:489–516CrossRefGoogle Scholar
  658. McKay DS et al (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH 84001. Science 273:924–930CrossRefGoogle Scholar
  659. McKeegan KD, Kallio AP, Heber VS et al (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–1532CrossRefGoogle Scholar
  660. McKenzie J (1984) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study. J Geol 89:185–198CrossRefGoogle Scholar
  661. McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:121–140Google Scholar
  662. McLaughlin K, Chavez F, Pennington JT, Paytan A (2006) A time series investigation of the oxygen isotope composition of dissolved inorganic phosphate in Monterey Bay, California. Limnol Oceanogr 51:2370–2379CrossRefGoogle Scholar
  663. McSween HY, Taylor LA, Stolper EM (1979) Allan Hills 77005: a new meteorite type found in Antarctica. Science 204:1201–1203CrossRefGoogle Scholar
  664. Meier-Augustein W (2010) Stable isotope forensics. Wiley, ChichesterCrossRefGoogle Scholar
  665. Mengel K, Hoefs J (1990) Liδ18OSiO2 systematics in volcanic rocks and mafic lower crustal xenoliths. Earth Planet Sci Lett 101:42–53CrossRefGoogle Scholar
  666. Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033CrossRefGoogle Scholar
  667. Michalski G, Bhattacharya SK, Mase DF (2011) Oxygen isotope dynamics of atmospheric nitrate and its precursor molecules. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Berlin, pp 613–635Google Scholar
  668. Mikaloff-Fletcher SE et al (2006) Inverse estimates of anthropogenic CO2 uptake, transport and storage by the ocean. Global Biogeochem Cycles 20:GB2002. Scholar
  669. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702CrossRefGoogle Scholar
  670. Ming T, Anders E, Hoppe P, Zinner E (1989) Meteoritic silicon carbide and its stellar sources, implications for galactic chemical evolution. Nature 339:351–354CrossRefGoogle Scholar
  671. Minigawa M, Wada E (1984) Stepwise enrichments of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  672. Mischler JA, Sowers TA, Alley RB, Battle M, McConnell JR, Mitchell L, Popp T, Sofen F, Spencer MK (2009) Carbon and hydrogen isotopic composition of methane over the last 1000 years. Global Geochem Cycl 23:GB4024, Scholar
  673. Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:818–823CrossRefGoogle Scholar
  674. Mix HT, Chamberlain CP (2014) Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America. Geochim Cosmochim Acta 141:532–546CrossRefGoogle Scholar
  675. Moldovanyi EP, Lohmann KC (1984) Isotopic and petrographic record of phreatic diagenesis: Lower Cretaceous Sligo and Cupido Formations. J Sediment Petrol 54:972–985Google Scholar
  676. Monster J, Anders E, Thode HG (1965) 34S/32S ratios for the different forms of sulphur in the Orgueil meteorite and their mode of formation. Geochim Cosmochim Acta 29:773–779CrossRefGoogle Scholar
  677. Monster J, Appel PW, Thode HG, Schidlowski M, Carmichael CW, Bridgwater D (1979) Sulphur isotope studies in early Archean sediments from Isua, West Greenland: implications for the antiquity of bacterial sulfate reduction. Geochim Cosmochim Acta 43:405–413CrossRefGoogle Scholar
  678. Montoya JP, Horrigan SG, McCarthy JJ (1991) Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA. Geochim Cosmochim Acta 55:3627–3638CrossRefGoogle Scholar
  679. Mook WG, Koopman M, Carter AF, Keeling CD (1983) Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide. I. Results from land stations. J Geophys Res 88:10915–10933CrossRefGoogle Scholar
  680. Morin S, Savarino J, Frey MF, Yan N, Bekki S, Bottenheim JW, Martins JM (2008) Tracing the origin and fate of NOx in the arctic atmosphere using stable isotopes in nitrate. Science 322:730–732CrossRefGoogle Scholar
  681. Moschen R, Lücke A, Parplies U, Radtke B, Schleser GH (2006) Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochim Cosmochim Acta 70:4367–4379CrossRefGoogle Scholar
  682. Mossmann JR, Aplin AC, Curtis CD, Coleman ML (1991) Geochemistry of inorganic and organic sulfur in organic-rich sediments from the Peru Margin. Geochim Cosmochim Acta 55:3581–3595CrossRefGoogle Scholar
  683. Moynier F, Blichert-Toft J, Telouk P, Luck JM, Albarede F (2007) Comparative stable isotope geochemistry of Ni, Cu, Zn and Fe in chondrites and iron meteorites. Geochim Cosmochim Acta 71:4365–4379CrossRefGoogle Scholar
  684. Moynier F, Pichat S, Pons ML, Fike D, Balter V, Albarède F (2008) Isotope fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130CrossRefGoogle Scholar
  685. Muehlenbachs K, Byerly G (1982) 18O enrichment of silicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contr Mineral Petrol 79:76–79CrossRefGoogle Scholar
  686. Muehlenbachs K, Clayton RN (1972) Oxygen isotope studies of fresh and weathered submarine basalts. Can J Earth Sci 9:471–479CrossRefGoogle Scholar
  687. Muehlenbachs K, Clayton RN (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. J Geophys Res 81:4365–4369CrossRefGoogle Scholar
  688. Mulitza S, Duerkoop A, Hale S, Wefer S, Niebler HS (1997) Planktonic foraminifera as recorders of past surface water stratification. Geology 25:335–338CrossRefGoogle Scholar
  689. Nabelek PI (1991) Stable isotope monitors. In: Contact metamorphism. Rev Mineral 26:395–435Google Scholar
  690. Nabelek PI, Labotka TC, O’Neil JR, Papike JJ (1984) Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contr Mineral Petrol 86:25–43CrossRefGoogle Scholar
  691. Neretin LN, Böttcher ME, Jǿrgensen BB, Volkov II, Lüschen H, Hilgenfeldt K (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistone sediments of the Black Sea. Geochim Cosmochim Acta 68:2081–2094CrossRefGoogle Scholar
  692. Niedermeyer EM, Forrest M, Beckmann B, Sessions AL, Mulch A, Scheefuß E (2016) The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel. Geochim Cosmochim Acta 184:55–70CrossRefGoogle Scholar
  693. Nielsen H, Ricke W (1964) S-Isotopenverhaltnisse von Evaporiten aus Deutschland. Ein Beitrag zur Kenntnis von δ34S im Meerwasser Sulfat. Geochim Cosmochim Acta 28:577–591CrossRefGoogle Scholar
  694. Niles PB, Leshin LA, Guan Y (2005) Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments. Geochim Cosmochim Acta 69:2931–2944CrossRefGoogle Scholar
  695. Nishio Y, Sasaki S, Gamo T, Hiyagon H, Sano Y (1998) Carbon and helium isotope systematics of North Fiji basin basalt glasses: carbon geochemical cycle in the subduction zone. Earth Planet Sci Lett 154:127–138CrossRefGoogle Scholar
  696. Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature 401:775–778CrossRefGoogle Scholar
  697. Norton D, Taylor HP (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. J Petrol 20:421–486CrossRefGoogle Scholar
  698. Nriagu JO, Coker RD, Barrie LA (1991) Origin of sulphur in Canadian Arctic haze from isotope measurements. Nature 349:142–145CrossRefGoogle Scholar
  699. Ochoa Gonzalez R, Strekopytov S, Amato F, Querol X, Reche C, Weiss D (2016) New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities. Environ Sci Tech 50:9816–9824CrossRefGoogle Scholar
  700. Ockert C, Gussone N, Kaufhold S, Teichert BM (2013) Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochim Cosmochim Acta 112:374–388CrossRefGoogle Scholar
  701. O‘Leary JA, Eiler JM, Rossman GR (2005) Hydrogen isotope geochemistry of nominally anhydrous minerals. Geochim Cosmochim Acta 69:A745Google Scholar
  702. O’Neil JR, Roe LJ, Reinhard E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel J Earth Sci 43:203–212Google Scholar
  703. Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–578CrossRefGoogle Scholar
  704. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559Google Scholar
  705. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 435–486Google Scholar
  706. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Geochemistry of hydrothermal ore deposits, 2nd edn. Holt Rinehart and Winston, New YorkGoogle Scholar
  707. Ohmoto H, Mizukani M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh TC (1983) Chemical processes of Kuroko formation. Econ Geol Monogr 5:570–604Google Scholar
  708. Ohmoto H, Kakegawa T, Lowe DR (1993) 3.4 billion year old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262:555CrossRefGoogle Scholar
  709. Ongley JS, Basu AR, Kyser TK (1987) Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet Sci Lett 83:80–84CrossRefGoogle Scholar
  710. Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulphate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182CrossRefGoogle Scholar
  711. Onuma N, Clayton RN, Mayeda TK (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. Science 167:536–538CrossRefGoogle Scholar
  712. Ott U (1993) Interstellar grains in meteorites. Nature 364:25–33CrossRefGoogle Scholar
  713. Owen T, Maillard JP, DeBergh C, Lutz BL (1988) Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240:1767–1770CrossRefGoogle Scholar
  714. Pack A, Gehler A, Süssenberger A (2013) Exploring the usability of isotopically anomaleous oxygen in bones and teeth as palaeo-CO2-barometer. Geochim Cosmochim Acta 102:306–317CrossRefGoogle Scholar
  715. Pagani M, Arthur MA, Freeman KH (1999a) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–292CrossRefGoogle Scholar
  716. Pagani M, Freeman KH, Arthur MA (1999b) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–879CrossRefGoogle Scholar
  717. Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13CrossRefGoogle Scholar
  718. Palmer MR, Pearson PN, Conbb SJ (1998) Reconstructing past ocean pH-depth profiles. Science 282:1468–1471CrossRefGoogle Scholar
  719. Park S, Perez T, Boering KA, Trumbore SE, Gil J, Marquina S, Tyler SC (2011) Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochem Cycles 25: Scholar
  720. Pawellek F, Veizer J (1994) Carbon cycle in the upper Danube and its tributaries: δ13CDIC constraints. Israel J Earth Sci 43:187–194Google Scholar
  721. Payne JL, Kump LR (2007) Evidence for recurrent early triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277CrossRefGoogle Scholar
  722. Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotope composition of Cenozoic seawater sulfate. Science 282:1459–1462CrossRefGoogle Scholar
  723. Paytan A, Luz B, Kolodny Y, Neori A (2002) Biologically mediated oxygen isotope exchange between water and phosphorus. Global Biogeochem Cycles 16–13:1–7Google Scholar
  724. Paytan A, Kastner M, Campbell D, Thiemens M (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665CrossRefGoogle Scholar
  725. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699CrossRefGoogle Scholar
  726. Pearson PN, Foster GI, Wade BS (2009) Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461:1110–1113CrossRefGoogle Scholar
  727. Peckmann J, Thiel V (2005) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467CrossRefGoogle Scholar
  728. Pedentchouk N, Freeman KH, Harris NB (2006) Different response of δD-values of n-alkanes, isoprenoids and kerogen during thermal maturation. Geochim Cosmochim Acta 70:2063–2072CrossRefGoogle Scholar
  729. Perez T, Garcia-Montiel D, Trumbore SE, Tyler SC, de Camargo P, Moreira M, Piccolo M, Cerri C (2006) Determination of N2O isotopic composition (15N, 18O, and 15N intramolecular distribution) and 15N enrichment factors of N2O formation via nitrification and denitrification from incubated Amazon forest soils. Ecol Appl 16:2153–2167CrossRefGoogle Scholar
  730. Perry EA, Gieskes JM, Lawrence JR (1976) Mg, Ca and 18O/16O exchange in the sediment-pore water system, Hole 149, DSDP. Geochim Cosmochim Acta 40:413–423CrossRefGoogle Scholar
  731. Peters MT, Wickham SM (1995) On the causes of 18O depletion and 18O/16O homogenization during regional metamorphism, the east Humboldt Range core complex, Nevada. Contr Mineral Petrol 119:68–82CrossRefGoogle Scholar
  732. Peters KE, Rohrbach BG, Kaplan IR (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. Am Assoc Petrol Geol Bull 65:501–508Google Scholar
  733. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  734. Petit JR et al (1999) Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  735. Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. Theory. Geochim Cosmochim Acta 51:683–695CrossRefGoogle Scholar
  736. Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Eviron Chem Lett 5:57–66CrossRefGoogle Scholar
  737. Piasecki A, Sessions A, Lawson M, Ferreira AA, Neto EVS, Eiler JM (2016) Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometry. Geochim Cosmochim Acta 188:58–72CrossRefGoogle Scholar
  738. Piasecki A, Sessions A, Lawson M, Ferreira AA, Neto EVS, Ellis GS, LewanMD Eiler JM (2018) Position-specific 13C distributions within propane from experiments and natural gas samples. Geochim Cosmochim Acta 220:110–124CrossRefGoogle Scholar
  739. Pineau F, Javoy M (1983) Carbon isotopes and concentrations in mid-ocean ridge basalts. Earth Planet Sci Lett 62:239–257CrossRefGoogle Scholar
  740. Pineau F, Javoy M, Bottinga Y (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge and their bearing on the problem of isotopic composition of deep-seated carbon. Earth Planet Sci Lett 29:413–421CrossRefGoogle Scholar
  741. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15CrossRefGoogle Scholar
  742. Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147CrossRefGoogle Scholar
  743. Poitrasson F, Levasseur S, Teutsch N (2005) Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet Sci Lett 234:151–164CrossRefGoogle Scholar
  744. Poitrasson F, Roskosz M, Corgne A (2009) No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: experimental evidence and implications for planery differentiation and accretion. Earth Planet Sci Lett 278:376–385CrossRefGoogle Scholar
  745. Poitrasson F, Delpech G, Gregoire M (2013) On the iron isotope heterogeneity of lithospheric mantle xenoliths: implications for mantle metasomatism, the origin of basalts and the iron isotope composition of the Earth. Contr Mineral Petrol 165:1243–1258CrossRefGoogle Scholar
  746. Pope E, Bird DK, Rosing MT (2012) Isotope composition and volume of Earth’s early oceans. PNAS 109:4371–4376CrossRefGoogle Scholar
  747. Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post Paleozoic chronology and mechanism of 13C depletion in primary organic matter. Am J Sci 289:436–454CrossRefGoogle Scholar
  748. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotope fractionation. Geochim Cosmochim Acta 62:69–77CrossRefGoogle Scholar
  749. Popp BN et al (2002) Global Biogeochemical Cycles 16.
  750. Poreda R (1985) Helium-3 and deuterium in back arc basalts: Lau Basin and the Mariana trough. Earth Planet Sci Lett 73:244–254CrossRefGoogle Scholar
  751. Poreda R, Schilling JG, Craig H (1986) Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet Sci Lett 78:1–17CrossRefGoogle Scholar
  752. Price FT, Shieh YN (1979) The distribution and isotopic composition of sulfur in coals from the Illinois Basin. Econ Geol 74:1445–1461CrossRefGoogle Scholar
  753. Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133CrossRefGoogle Scholar
  754. Puceat E, Joachimski MM et al (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142CrossRefGoogle Scholar
  755. Quade J, Cerling TE (1995) Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. Palaeo, Palaeo, Palaeo 115:91–116CrossRefGoogle Scholar
  756. Quade J et al (1992) A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem Geol 94:183–192CrossRefGoogle Scholar
  757. Quade J, Breecker DO, Daeron M, Eiler J (2011) The paleoaltimetry of Tibet: an isotopic perspective. Am J Sci 311:77–115CrossRefGoogle Scholar
  758. Quast A, Hoefs J, Paul J (2006) Pedogenic carbonates as a proxy for palaeo-CO2 in the Paleozoic atmosphere. Palaeo, Palaeo, Palaeo 242:110–125CrossRefGoogle Scholar
  759. Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256:74–79CrossRefGoogle Scholar
  760. Quay PD, Emerson S, Wilbur DO, Stump S (1993) The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: a tracer of biological productivity. J Geophys Res 98:8447–8458CrossRefGoogle Scholar
  761. Quay PD, Wilbur DO, Richey JE, Devol AH, Benner R, Forsberg BR (1995) The 18O/16O of dissolved oxygen in rivers and lakes in the Amazon Basin: determining the ratio of respiration to photosynthesis in freshwaters. Limnol Oceanogr 40:718–729CrossRefGoogle Scholar
  762. Quay PD, Stutsman J, Wibur D, Snover A, Dlugokencky E, Brown T (1999) The isotopic composition of atmospheric methane. Global Geochem Cycles 13:445–461CrossRefGoogle Scholar
  763. Raab M, Spiro B (1991) Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chem Geol 86:323–333Google Scholar
  764. Rabinovich AL, Grinenko VA (1979) Sulfate sulfur isotope ratios for USSR river water. Geochemistry 16(2):68–79Google Scholar
  765. Radke J, Bechtel A, Gaupp R, Püttmann W, Schwark L, Sachse D, Gleixner D (2005) Correlation between hydrogen isotope ratios of lipid biomarkers and sediment maturity. Geochim Cosmochim Acta 69:5517–5530CrossRefGoogle Scholar
  766. Rahn T, Wahlen M (1997) Stable isotope enrichment in stratospheric nitrous oxide. Science 278:1776–1778CrossRefGoogle Scholar
  767. Rahn T, Eiler JM, Boering KA, Wennberg PO, McCarthy MC, Tyler S, Schauffler S, Donnelly S, Atlas E (2003) Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2. Nature 424:918–921CrossRefGoogle Scholar
  768. Rai VK, Thiemens MH (2007) Mass independently fractionated sulphur components in chondrites. Geochim Cosmochim Acta 71:1341–1354CrossRefGoogle Scholar
  769. Rai VK, Jackson TL, Thiemens MH (2005) Photochemical mass-independent sulphur isotopes in achondritic meteorites. Science 309:1062–1065CrossRefGoogle Scholar
  770. Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724CrossRefGoogle Scholar
  771. Raitzsch M, Hönisch B (2014) Cenozoic boron isotope variations in benthic foraminifera. Geology 41:591–594CrossRefGoogle Scholar
  772. Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C/12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res 29:1035–1039CrossRefGoogle Scholar
  773. Rau GH, Takahashi T, DesMarais DJ (1989) Latitudinal variations in plankton 13C: implications for CO2 and productivity in past ocean. Nature 341:516–518CrossRefGoogle Scholar
  774. Rau GH, Takahashi T, DesMarais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and ΣCO2(aq) in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419CrossRefGoogle Scholar
  775. Raven MR, Adkins JF, Werne JP, Lyons TW, Sessions AL (2015) Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org Geochem 80:53–59CrossRefGoogle Scholar
  776. Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopic composition of coals and kerogen. In: Douglas AG, Maxwell JR (eds) Phys Chem Earth 12:711–723CrossRefGoogle Scholar
  777. Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381CrossRefGoogle Scholar
  778. Rice DD, Claypool GE (1981) Generation, accumulation and resource potential of biogenic gas. Am Assoc Petrol Geol Bull 65:5–25Google Scholar
  779. Rice A, Dayalu A, Quay P, Gammon R (2011) Isotopic fractionation during soil uptake of atmospheric hydrogen. Biogeosciences 8:763–769CrossRefGoogle Scholar
  780. Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110CrossRefGoogle Scholar
  781. Riciputi LR, Cole DR, Machel HG (1996) Sulfide formation in reservoir carbonates of the Devonian Nishu Formation, Alberta, Canada: an ion microprobe study. Geochim Cosmochim Acta 60:325–336CrossRefGoogle Scholar
  782. Rindsberger MS, Jaffe S, Rahamin S, Gat JR (1990) Patterns of the isotopic composition of precipitation in time and space; data from the Israeli storm water collection program. Tellus 42B:263–271CrossRefGoogle Scholar
  783. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu–Ni–(PGE)-deposits. Econ Geol 98:635–641CrossRefGoogle Scholar
  784. Ripperger S, Rehkämper M, Porcelli D, Halliday AN (2007) Cadmium isotope fractionation in seawater – a signature of biological activity. Earth Planet Sci Lett 261:670–684CrossRefGoogle Scholar
  785. Robert F (2001) The origin of water on Earth. Science 293:1056–1058CrossRefGoogle Scholar
  786. Robert F, Epstein S (1982) The concentration and isotopic composition of hydrogen, carbon and nitrogen carbonaceous meteorites. Geochim Cosmochim Acta 46(8):1–95Google Scholar
  787. Robert F, Merlivat L, Javoy M (1978) Water and deuterium content in ordinary chondrites. Meteoritics 12:349–354Google Scholar
  788. Robert F, Gautier D, Dubrulle B (2000) The solar system D/H ratio: observations and theories. Space Sci Rev 92:201–224CrossRefGoogle Scholar
  789. Röckmann T et al (1998) Mass independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–546CrossRefGoogle Scholar
  790. Röckmann T, Jöckel P, Gros V, Bräunlich M, Possnert G, Brenninkmeijer CAM (2002) Using 14C, 13C, 18O and 17O isotopic variations to provide insights into the high northern latitude surface CO inventory. Atmos Chem Phys 2:147–159CrossRefGoogle Scholar
  791. Röckmann T, Kaiser J, Brenninkmeijer CAM, Brand WA (2003) Gas chromatography/isotope ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. Rapid Commun Mass Spectrom 17:1897–1908CrossRefGoogle Scholar
  792. Röhl U, Norris RD, Bralower TJ, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930CrossRefGoogle Scholar
  793. Romanek CS et al (1994) Record of fluid-rock interaction on Mars from the meteorite ALH 84001. Nature 372:655–657CrossRefGoogle Scholar
  794. Rooney MA, Claypool GE, Chung HM (1995) Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol 126:219–232CrossRefGoogle Scholar
  795. Rouxel O, Fouquet Y, Ludden JN (2004a) Copper isotope systematics of the Lucky Strike, Rainbow and Logatschev seafloor hydrothermal fields on the Mi-Atlantic Ridge. Econ Geol 99:585–600CrossRefGoogle Scholar
  796. Rouxel O, Fouquet Y, Ludden JN (2004b) Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium and iron isotopes. Geochim Cosmochim Acta 68:2295–2311CrossRefGoogle Scholar
  797. Rouxel O, Bekker A, Edwards KJ (2005) Iron isotope constraints on the Archean and Proterozoic ocean redox state. Science 307:1088–1091CrossRefGoogle Scholar
  798. Rouxel O, Ono S, Alt J, Rumble D, Ludden J (2008a) Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet Sci Lett 268:110–123CrossRefGoogle Scholar
  799. Rouxel O, Shanks WC, Bach W, Edwards KJ (2008b) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem Geol 252:214–227CrossRefGoogle Scholar
  800. Rozanski K, Sonntag C (1982) Vertical distribution of deuterium in atmospheric water vapour. Tellus 34:135–141Google Scholar
  801. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Climate change in continental isotopic records. Geophys Monograph 78:1–36Google Scholar
  802. Rumble D, Yui TF (1998) The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 62:3307–3321CrossRefGoogle Scholar
  803. Rumble D, Young ED, Shahar A, Guo W (2011) Stable isotope cosmochemistry and the evolution of planetary systems. Elements 7:23–28CrossRefGoogle Scholar
  804. Russell AK, Kitajima K, Strickland A, Medaris LG, Schulze DJ, Valley JW (2013) Eclogite-facies fluid infiltration: constraints from δ18O zoning in garnet. Contr Mineral Petrol 165:103–116CrossRefGoogle Scholar
  805. Rye RO (1993) The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Econ Geol 88:733–753CrossRefGoogle Scholar
  806. Rye RO (2005) A review of stable isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215:5–36CrossRefGoogle Scholar
  807. Rye RO, Schuiling RD, Rye DM, Jansen JBH (1976) Carbon, hydrogen and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece. Geochim Cosmochim Acta 40:1031–1049CrossRefGoogle Scholar
  808. Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate. Econ Geol 87:227–262CrossRefGoogle Scholar
  809. Saal AE, Hauri EH, Van Orman JA, Rutherford MJ (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340:1317–1320CrossRefGoogle Scholar
  810. Saccocia PJ, Seewald JS, Shanks WC (2009) Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 °C, 50 MPa. Geochim Cosmochim Acta 73:6789–6804CrossRefGoogle Scholar
  811. Sachse D, Billault I et al (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Ann Rev Earth Planet Sci 40:221–249CrossRefGoogle Scholar
  812. Sackett WM (1988) Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim Cosmochim Acta 42:571–580CrossRefGoogle Scholar
  813. Sackett WM, Thompson RR (1963) Isotopic organic carbon composition of recent continental derived clastic sediments of Eastern Gulf Coast, Gulf of Mexico. Bull Am Assoc Petrol Geol 47:525Google Scholar
  814. Sackett WM, Eadie BJ, Exner ME (1973) Stable isotope composition of organic carbon in recent Antarctic sediments. Adv Org Geochem 1973:661Google Scholar
  815. Safarian AR, Nielsen SG, Marschall HR, McCubbin FM, Monteleone BD (2014) Early accretion of water in the inner solar system from a carbonaceous-like source. Science 346:623–626CrossRefGoogle Scholar
  816. Saino T, Hattori A (1980) 15N natural abundance in oceanic suspended particulate organic matter. Nature 283:752–754CrossRefGoogle Scholar
  817. Saino T, Hattori A (1987) Geophysical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep Sea Res 34:807–827CrossRefGoogle Scholar
  818. Sakai H (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem J 2:29–49CrossRefGoogle Scholar
  819. Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim Cosmochim Acta 46:729–738CrossRefGoogle Scholar
  820. Sakai H, DesMarais DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441CrossRefGoogle Scholar
  821. Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274CrossRefGoogle Scholar
  822. Sarntheim M et al (2001) Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—concepts, reconstruction and numerical modeling. In: Schäfer P, Ritzau W, Schlüter M, Thiede J (eds) The northern North Atlantic. Springer, Heidelberg, pp 365–410CrossRefGoogle Scholar
  823. Sass E, Kolodny Y (1972) Stable isotopes, chemistry and petrology of carbonate concretions (Mishash formation, Israel). Chem Geol 10:261–286CrossRefGoogle Scholar
  824. Savage PS, Georg RB, Williams HM, Burton KW, Halliday AN (2011) Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 75:6124–6139CrossRefGoogle Scholar
  825. Savage PS, Georg RB, Williams HM, Turner S, Halliday AN, Chappell BW (2012) The silicon isotope composition of granites. Geochim Cosmochim Acta 92:184–202CrossRefGoogle Scholar
  826. Savin SM, Epstein S (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:25–42CrossRefGoogle Scholar
  827. Savin SM, Epstein S (1970b) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim Cosmochim Acta 34:43–63CrossRefGoogle Scholar
  828. Savin SM, Lee M (1988) Isotopic studies of phyllosilicates. Rev Mineral 19:189–223Google Scholar
  829. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111CrossRefGoogle Scholar
  830. Schidlowski M (2001) Carbon isotopes as biochemical recorders of life over 3.8 Ga of Earth history. Evolution of a concept. Precam Res 106:117–134CrossRefGoogle Scholar
  831. Schiegl WE, Vogel JV (1970) Deuterium content of organic matter. Earth Planet Sci Lett 7:307–313CrossRefGoogle Scholar
  832. Schimmelmann A, Lewan MD, Wintsch RP (1999) D/H ratios of kerogen, bitumen, oil and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS and III. Geochim Cosmochim Acta 63:3751–3766CrossRefGoogle Scholar
  833. Schimmelmann A, Sessions AL, Mastalerz M (2006) Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Ann. Rev Earth Planet Sci 34:501–533CrossRefGoogle Scholar
  834. Schmidt M, Botz R, Rickert D, Bohrmann G, Hall SR, Mann S (2001) Oxygen isotopes of marine diatoms and relations to opal-A maturation. Geochim Cosmochim Acta 65:201–211CrossRefGoogle Scholar
  835. Schmitt AD, Stille P, Vennemann T (2003) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim Cosmochim Acta 67:2607–2614CrossRefGoogle Scholar
  836. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  837. Schmitt J, Schneider R et al (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714CrossRefGoogle Scholar
  838. Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661CrossRefGoogle Scholar
  839. Schoell M (1983) Genetic characterization of natural gases. Bull Am Assoc Petrol Geol 67:2225–2238Google Scholar
  840. Schoell M (1984) Recent advances in petroleum isotope geochemistry. Org Geochem 6:645–663CrossRefGoogle Scholar
  841. Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10CrossRefGoogle Scholar
  842. Schoell M, McCaffrey MA, Fago FJ, Moldovan JM (1992) Carbon isotope compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil. Geochim Cosmochim Acta 56:1391–1399CrossRefGoogle Scholar
  843. Schoell M, Schouten S, Sinninghe Damste JS, de Leeuw JW, Summons RE (1994) A molecular organic carbon isotope record of Miocene climatic changes. Science 263:1122–1125CrossRefGoogle Scholar
  844. Schoenberg R, von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252:342–359CrossRefGoogle Scholar
  845. Schoenemann SW, Steig EJ, Ding Q, Markle BR, Schauer AJ (2014) Triple water-isotopologue record from WAIS Divide Antarctica: controls on glacial-interglacial changes in 17O excess of precipitation. J Geophys Res Atmos 119:8741–8763CrossRefGoogle Scholar
  846. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  847. Schrag DP (1999) Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperature. Chem Geol 161:2265–2278CrossRefGoogle Scholar
  848. Schrag DP, Hampt G, Murry DW (1996) Pore fluid constraints on the temperature and oxygen isotopic composition of the Glacial ocean. Science 272:1930–1932CrossRefGoogle Scholar
  849. Schwalb A, Burns SJ, Kelts k (1999) Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano lakes. Palaeo, Palaeo, Palaeo 148:153–168CrossRefGoogle Scholar
  850. Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91CrossRefGoogle Scholar
  851. Schwarcz HP, Melbye J, Katzenberg MA, Knyf M (1985) Stable isotopes in human skeletons of southern Ontario: reconstruction of palaeodiet. J Archaeol Sci 12:187–206CrossRefGoogle Scholar
  852. Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677CrossRefGoogle Scholar
  853. Seccombe PK, Spry PG, Both Ra, Jones MT, Schiller JC (1985) Base metal mineralization in the Kaumantoo Group, South Australia: a regional sulfur isotope study. Econ Geol 80:1824–1841CrossRefGoogle Scholar
  854. Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotope signatures of peridotite xenoliths and isotope fractionation at high temperature between olivine and pyroxene. Chem Geol 212:163–177CrossRefGoogle Scholar
  855. Sessions AL (2016) Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem 96:43–64CrossRefGoogle Scholar
  856. Sessions AL, Sylva SP, Summons RE, Hayes JM (2004) Isotopic exchange of carbon-bound hydrogen over geologic time scales. Geochim Cosmochim Acta 68:1545–1559CrossRefGoogle Scholar
  857. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934CrossRefGoogle Scholar
  858. Severinghaus JP, Bender ML, Keeling RF, Broecker WS (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling and thermal diffusion. Geochim Cosmochim Acta 60:1005–1018CrossRefGoogle Scholar
  859. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146CrossRefGoogle Scholar
  860. Severinghaus JP, Beaudette R, Headly MA, Taylor K, Brook EJ (2009) Oxygen-18 of O2 records the impact of abrupt climate change on terrestrial biosphere. Science 324:1431–1434CrossRefGoogle Scholar
  861. Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN, Chiba H, Green DRH (2004) The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N. Earth Planet Sci Lett 225:63–76CrossRefGoogle Scholar
  862. Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope composition of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70:2006–2022CrossRefGoogle Scholar
  863. Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74:3984–4004CrossRefGoogle Scholar
  864. Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. Initial Rep DSDP 29:743–755Google Scholar
  865. Shackleton NJ, Hall MA, Line J, Cang S (1983) Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322CrossRefGoogle Scholar
  866. Shahar A, Young ED (2007) Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI. Earth Planet Sci Lett 257:497–510CrossRefGoogle Scholar
  867. Shahar A, Ziegler K, Young ED, Ricollaeu A, Schauble E, Fei Y (2009) Experimentally determined Si isotope fractionation between silcate and Fe metal and implications for the Earth’s core formation. Earth Planet Sci Lett 288:228–234CrossRefGoogle Scholar
  868. Shahar A, Hillgren VJ, Young ED, Fei Y, Macris CA, Deng L (2011) High-temperature Si isotope fractionation between iron metal and silicate. Geochim Cosmochim Acta 75:7688–7697CrossRefGoogle Scholar
  869. Shahar A, Hillgren VJ, Horan MF, Mesa-Garcia J, Kaufman LA, Mock TD (2014) Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochim Cosmochim Acta 150:253–264CrossRefGoogle Scholar
  870. Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y, Shu J, Mao W (2016) Pressure-dependent isotopic composition of iron alloys. Science 352:580–582CrossRefGoogle Scholar
  871. Shaheen R, Albaunza MM, Jackson TL, McCabe J, Savarino J, Thiemens MH (2014) Large sulfur-isotope anomalies in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere. PNAS 111:11979–11983CrossRefGoogle Scholar
  872. Shanks WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469–525CrossRefGoogle Scholar
  873. Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076CrossRefGoogle Scholar
  874. Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ (2010) The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329:10501053CrossRefGoogle Scholar
  875. Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513CrossRefGoogle Scholar
  876. Shaw AM, Hauri EH, Fischer TP, Hilton DR, Kelley KA (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-earth water cycle. Earth Planet Sci Lett 275:138–145CrossRefGoogle Scholar
  877. Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM (2012) Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geosci 5:224–228CrossRefGoogle Scholar
  878. Shelton KL, Rye DM (1982) Sulfur isotopic compositions of ores from Mines Gaspe, Quebec: An example of sulfate-sulfide isotopic disequilibria in ore forming fluids with applications to other porphyry type deposits. Econ Geol 77:1688–1709CrossRefGoogle Scholar
  879. Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. Earth Planet Sci Lett 64:405–441CrossRefGoogle Scholar
  880. Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272CrossRefGoogle Scholar
  881. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Stable isotopes in high temperature geological processes. Rev Mineral 16:165–183Google Scholar
  882. Sheppard SMF, Epstein S (1970) D/H and O18/O16 ratios of minerals of possible mantle or lower crustal origin. Earth Planet Sci Lett 9:232–239CrossRefGoogle Scholar
  883. Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Mineral 31:1–24CrossRefGoogle Scholar
  884. Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water. Contrib Mineral Petrol 91:74–81CrossRefGoogle Scholar
  885. Sheppard SMF, Schwarcz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contr Mineral Petrol 26:161–198CrossRefGoogle Scholar
  886. Sheppard SMF, Nielsen RL, Taylor HP (1971) Hydrogen and oxygen isotope ratios in minerals from Porphyry Copper deposits. Econ Geol 66:515–542CrossRefGoogle Scholar
  887. Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097CrossRefGoogle Scholar
  888. Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbons reservoirs. Nature 416:522–524CrossRefGoogle Scholar
  889. Sherwood Lollar B et al (2006) Unravelling abiogenic and biogenic sources of methane in the earth, s deep subsurface. Chem Geol 226:328–339CrossRefGoogle Scholar
  890. Shieh YN, Schwarcz HP (1974) Oxygen isotope studies of granite and migmatite, Grenville province of Ontario, Canada. Geochim Cosmochim Acta 38:21–45CrossRefGoogle Scholar
  891. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: version 1.1. Geochem Geophys Geosyst 300. Scholar
  892. Shmulovich KI, Landwehr D, Simon K, Heinrich W (1999) Stable isotope fractionation between liquid and vapour in water-salt systems up to 600 °C. Chem Geol 157:343–354CrossRefGoogle Scholar
  893. Simon K (2001) Does δD from fluid inclusions in quartz reflect the original hydrothermal fluid? Chem Geol 177:483–495CrossRefGoogle Scholar
  894. Simon JI, dePaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466CrossRefGoogle Scholar
  895. Simon L, Lecuyer C, Marechal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term d11B evolution of seawater and oceanic crust. Chem Geol 225:61–76CrossRefGoogle Scholar
  896. Sio CK, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in-situ Mg–Fe isotopic analysis. Geochim Cosmochim Acta 123:302–321CrossRefGoogle Scholar
  897. Skauli H, Boyce AJ, Fallick AE (1992) A sulphur isotope study of the Bleikvassli Zn–Pb–Cu deposit, Nordland, northern Norway. Mineral Deposita 27:284–292Google Scholar
  898. Skirrow R, Coleman ML (1982) Origin of sulfur and geothermometry of hydrothermal sulfides from the Galapagos Rift, 86°W. Nature 249:142–144CrossRefGoogle Scholar
  899. Smith JW, Batts BD (1974) The distribution and isotopic composition of sulfur in coal. Geochim Cosmochim Acta 38:121–123CrossRefGoogle Scholar
  900. Smith JW, Gould KW, Rigby D (1982) The stable isotope geochemistry of Australian coals. Org Geochem 3:111–131CrossRefGoogle Scholar
  901. Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem Geophys Geosystems 2:U1–U32CrossRefGoogle Scholar
  902. Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. Am Assoc Petrol Geol Bull 68:31–49Google Scholar
  903. Sofer Z, Gat JR (1972) Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: analytical and geophysical implications. Earth Planet Sci Lett 15:232–238CrossRefGoogle Scholar
  904. Sonnerup RE, Quay PD, McNichol AP, BullisterJL Westby TA, Anderson HL (1999) Reconstructing the oceanic 13C Suess effect. Global Biogeochem Cycles 13:857–872CrossRefGoogle Scholar
  905. Sowers T (2001) The N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res 106:31903–31914CrossRefGoogle Scholar
  906. Sowers T (2010) Atmospheric methane isotope records covering the Holocene period. Quaternary Sci Rev 29:213–221CrossRefGoogle Scholar
  907. Sowers T, Bender M, Raynaud D, Korotkevich YS, Orchardo J (1991) The δ18O of atmospheric O2 from air inclusions in the Vostok ice core: timing of CO2 and ice volume changes during the Penultimate deglaciation. Paleoceanography 6:679–696CrossRefGoogle Scholar
  908. Sowers T, Bender M, Raynaud D, Korotkevich YS (1992) δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J Geophys Res 97:15683–15697CrossRefGoogle Scholar
  909. Sowers T et al (1993) A 135,000 year Vostock-SPECMAP common temporal framework. Paleoceanography 8:737–766CrossRefGoogle Scholar
  910. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500CrossRefGoogle Scholar
  911. Spicuzza M, Day J, Taylor L, Valley JW (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet Sci Lett 253:254–265CrossRefGoogle Scholar
  912. Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112S:625–637CrossRefGoogle Scholar
  913. Stahl W (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem Geol 20:121–149CrossRefGoogle Scholar
  914. Steele RC, Elliott T, Coath CD, Regelous M (2011) Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim Cosmochim Acta 75:7906–7925CrossRefGoogle Scholar
  915. Stefurak EJ, Woodward WF, Lowe DR (2015) Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater. Geochim Cosmochim Acta 150:26–52CrossRefGoogle Scholar
  916. Steinhoefel G, Horn I, von Blanckenburg F (2009) Micro-scale tracing of Fe and Si isotope signatues in banded iron formation using femtosecond laser ablation. Geochim Cosmochim Acta 73:5343–5360CrossRefGoogle Scholar
  917. Steinhoefel G, von Blanckenburg F, Horn I, Konhauser KO, Beukes NJ, Gutzmer J (2010) Deciphering formation processes of banded iron formations from the Transvaal and Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochim Cosmochim Acta 74:2677–2696CrossRefGoogle Scholar
  918. Stern LA, Chamberlain CP, Reynolds RC, Johnson GD (1997) Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse. Geochim Cosmochim Acta 61:731–744CrossRefGoogle Scholar
  919. Sternberg LS, Anderson WT, Morrison K (2002) Separating soil and leaf water 18O isotope signals in plant stem cellulose. Geochim Cosmochim Acta 67:2561–2566CrossRefGoogle Scholar
  920. Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521CrossRefGoogle Scholar
  921. Stevens CM (1988) Atmospheric methane. Chem Geol 71:11–21CrossRefGoogle Scholar
  922. Stevens CM, Krout L, Walling D, Venters A, Engelkemeier A, Ross LE (1972) The isotopic composition of atmospheric carbon monoxide. Earth Planet Sci Lett 16:147–165CrossRefGoogle Scholar
  923. Stewart MK (1974) Hydrogen and oxygen isotope fractionation during crystallization of mirabilite and ice. Geochim Cosmochim Acta 38:167–172CrossRefGoogle Scholar
  924. Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A, Shusta SS, Valentine DL, Eiler JM (2014) Combined 13C–D and D–D clumping in methane: methods and preliminary results. Geochim Cosmochim Acta 126:169–191CrossRefGoogle Scholar
  925. Strauß H (1997) The isotopic composition of sedimentary sulfur through time. Palaeo, Palaeo, Palaeo 132:97–118CrossRefGoogle Scholar
  926. Strauß H (1999) Geological evolution from isotope proxy signals—sulfur. Chem Geol 161:89–101CrossRefGoogle Scholar
  927. Strauß H, Peters-Kottig W (2003) The Phanerozoic carbon cycle revisited: the carbon isotope composition of terrestrial organic matter. Geochem Geophys Geosys 4:1083.
  928. Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian—Devonian strata in the Illinois basin. Geochim Cosmochim Acta 55:309–325CrossRefGoogle Scholar
  929. Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnold U, Eldridge CS, Ohmoto H (1981) The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet Sci Lett 53:382–390CrossRefGoogle Scholar
  930. Sugawara S, Nakazawa T, Shirakawa Y, Kawamura K, Aoki S, Machida T, Honda H (1998) Vertical profile of the carbon isotope ratio of stratospheric methane over Japan. Geophys Res Lett 24:2989–2992CrossRefGoogle Scholar
  931. Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863CrossRefGoogle Scholar
  932. Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:1233–1304CrossRefGoogle Scholar
  933. Sweeney RE, Kaplan IR (1980) Natural abundance of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Mar Chem 9:81–94CrossRefGoogle Scholar
  934. Sweeney RE, Liu KK, Kaplan IR (1978) Oceanic nitrogen isotopes and their use in determining the source of sedimentary nitrogen. In: Robinson BW (ed) DSIR Bull 220:9–26Google Scholar
  935. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279Google Scholar
  936. Tang Y, Perry JK, Jenden PD, Schoell M (2000) Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim Cosmochim Acta 64:2673–2687CrossRefGoogle Scholar
  937. Tang Y, Huang Y, Ellis GS, Wang Y, Kralert PG, Gillaizeau B, Ma Q, Hwang R (2005) A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochim Cosmochim Acta 69:4505–4520CrossRefGoogle Scholar
  938. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007) Lithium isotope systematics of peridotite xenoliths from Hannuoba, North China craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341CrossRefGoogle Scholar
  939. Taran YA, Kliger GA, Sevastianov VS (2007) Carbon isotope effect in the open system Fischer Trosch synthesis. Geochim Cosmochim Acta 71:4474–4487CrossRefGoogle Scholar
  940. Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contr Mineral Petrol 19:1–71CrossRefGoogle Scholar
  941. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883CrossRefGoogle Scholar
  942. Taylor HP (1977) Water/rock interactions and the origin of H2O in granite batholiths. J Geol Soc 133:509CrossRefGoogle Scholar
  943. Taylor HP (1978) Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci Lett 38:177–210CrossRefGoogle Scholar
  944. Taylor HP (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47:243–254CrossRefGoogle Scholar
  945. Taylor HP (1986a) Igneous rocks: II. Isotopic case studies of circumpacific magmatism. In: Stable isotopes in high temperature geological processes. Rev Mineralogy 16:273–317Google Scholar
  946. Taylor BE (1986b) Magmatic volatiles: isotopic variation of C, H and S. Rev Mineral 16:185–225Google Scholar
  947. Taylor BE (1987a) Stable isotope geochemistry of ore-forming fluids. In: Stable isotope geochemistry of low-temperature fluids. Short Course Mineralogical Association Canada, vol 13, pp 337–445Google Scholar
  948. Taylor HP (1987b) Comparison of hydrothermal systems in layered gabbros and granites, and the origin of low-δ18O magmas. In: Magmatic processes: physicochemical principles. The Geochemical Society Special Publication, vol 1. pp 337–357Google Scholar
  949. Taylor HP (1988) Oxygen, hydrogen and strontium isotope constraints on the origin of granites. Trans Royal Soc Edinburgh: Earth Sci 79:317–338CrossRefGoogle Scholar
  950. Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 229–302Google Scholar
  951. Taylor BE, Bucher-Nurminen K (1986) Oxygen and carbon isotope and cation geochemistry of metasomatic carbonates and fluids—Bergell aureole, Northern Italy. Geochim Cosmochim Acta 50:1267–1279CrossRefGoogle Scholar
  952. Taylor HP, Forester RW (1979) An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 M.Y. old fossil hydrothermal system. J Petrol 20:355–419CrossRefGoogle Scholar
  953. Taylor BE, O’Neil JR (1977) Stable isotope studies of metasomatic Ca–Fe–Al–Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contr Mineral Petrol 63:1–49CrossRefGoogle Scholar
  954. Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Stable isotopes in high temperature geological processes. Rev Mineralogy 16:227–271Google Scholar
  955. Taylor BE, Wheeler MC (1994) Sulfur- and oxygen isotope geochemistry of acid mine drainage in the Western United States. In: Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series, vol 550. American Chemical Society, Washington, DC, pp 481–514Google Scholar
  956. Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545CrossRefGoogle Scholar
  957. Taylor HP, Turi B, Cundari A (1984) 18O/16O and chemical relationships in K-rich volcanic rocks from Australia, East Africa, Antarctica and San Venanzo Cupaello, Italy. Earth Planet Sci Lett 69:263–276CrossRefGoogle Scholar
  958. Teece MA, Fogel ML (2007) Stable carbon isotope biogeochemistry of monosaccharides in aquatic organisms and terrestrial plants. Org Geochem 38:458–473CrossRefGoogle Scholar
  959. Teichert BM, Gussone N, Torres ME (2009) Controls on calcium isotope fractionation in sedimentary porewaters. Earth Planet Sci Lett 279:373–382CrossRefGoogle Scholar
  960. Telmer KH, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspective. Chem Geol 159:61–86CrossRefGoogle Scholar
  961. Teng FZ, Dauphas N, Helz R (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320:16201622CrossRefGoogle Scholar
  962. Thiagarajan N, Adkins J, Eiler J (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim Cosmochim Acta 75:4416–4425CrossRefGoogle Scholar
  963. Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966CrossRefGoogle Scholar
  964. Thiemens MH (1988) Heterogeneity in the nebula: evidence from stable isotopes. In: Matthews MS (ed) Kerridge JF. Meteorites and the early solar system, University of Arizona Press, pp 899–923Google Scholar
  965. Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345CrossRefGoogle Scholar
  966. Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262CrossRefGoogle Scholar
  967. Thiemens MH, Jackson T, Zipf EC, Erdman PW, van Egmond C (1995) Carbon dioxide and oxygen isotope anomalies in the mesophere and stratosphere. Science 270:969–972CrossRefGoogle Scholar
  968. Thode HG, Monster J (1964) The sulfur isotope abundances in evaporites and in ancient oceans. In: Vinogradov AP (ed) Proceedings of geochemistry conference commemorating the centenary of V I Vernadskii’s birth, vol 2, p630Google Scholar
  969. Thomassot E, Cartigny P, Harris JW, Lorand JP, Rollion-Bard C, Chaussidon M (2009) Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet Sci Lett 282:79–90CrossRefGoogle Scholar
  970. Thompson P, Schwarcz HP, Ford DE (1974) Continental Pleistocene climatic variations from speleothem age and isotopic data. Science 184:893–895CrossRefGoogle Scholar
  971. Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the last glacial maximum. J Quat Sci 15:377–394CrossRefGoogle Scholar
  972. Thompson LG et al (2006) Abrupt tropical climate change: past and present. Proc Nat Acad Sci 103:10536–10543CrossRefGoogle Scholar
  973. Tiedemann R, Sarntheim M, Shackleton NJ (1994) Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659. Paleoceanography 9:619–638CrossRefGoogle Scholar
  974. Tilley B, Muehlenbachs K (2013) Isotope reversals and universal stages and trends of gas maturation in sealed self-contained petroleum systems. Chem Geol 339:194–204CrossRefGoogle Scholar
  975. Todd CS, Evans BW (1993) Limited fluid-rock interaction at marble-gneiss contacts during Cretaceous granulite-facies metamorphism, Seward Peninsula, Alaska. Contr Mineral Petrol 114:27–41CrossRefGoogle Scholar
  976. Tostevin R, Turchyn AV, Farquhar J, Johnston DT, Eldridge DL, Bishop JK, McIlvin M (2014) Multiple sulfur isotope constraints on the modern sulfur cycle. Earth Planet Sci Lett 396:14–21CrossRefGoogle Scholar
  977. Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C–18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717CrossRefGoogle Scholar
  978. Trudinger PA, Chambers LA, Smith JW (1985) Low temperature sulphate reduction: biological versus abiological. Can J Earth Sci 22:1910–1918CrossRefGoogle Scholar
  979. Trudinger CM, Enting IG, Francey RJ, Etheridge DM, Rayner PJ (1999) Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus 51B:233–248CrossRefGoogle Scholar
  980. Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry, vol I. Elsevier, New York, Amsterdam, pp 179–226Google Scholar
  981. Trust BA, Fry B (1992) Stable sulphur isotopes in plants: a review. Plant, Cell Environ 15:1105–1110CrossRefGoogle Scholar
  982. Tucker ME, Wright PV (1990) Carbonate sedimentology. Blackwell, London, pp 365–400CrossRefGoogle Scholar
  983. Tudge AP (1960) A method of analysis of oxygen isotopes in orthophosphate—its use in the measurement of paleotemperatures. Geochim Cosmochim Acta 18:81–93CrossRefGoogle Scholar
  984. Turchin AV, Schrag DP (2006) Cenozoic evolution of the sulphur cycle: insight from oxygen isotopes in marine sulphate. Earth Planet Sci Lett 241:763–779CrossRefGoogle Scholar
  985. Turchyn AV, Schrag DP (2004) Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science 303:2004–2007CrossRefGoogle Scholar
  986. Uemura R, Abe O, Motoyama H (2010) Determining the 17O/16O ratio of water using a water—CO2 equilibration method: application to glacial-interglacial changes in 17O excess from the Dome Fuji ice core Antarctica. Geochim Cosmochim Acta 74:4919–4936CrossRefGoogle Scholar
  987. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562CrossRefGoogle Scholar
  988. Usui T, Alexander CM, Wang J, Simon JI, Jones JH (2012) Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet Sci Lett 357–358:119–129CrossRefGoogle Scholar
  989. Usui T, Alexander CM, Wang J, Simon JI, Jones JH (2015) Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet Sci Lett 410:140–151CrossRefGoogle Scholar
  990. Valdes MC, Moreira M, Foriel J, Moynier F (2014) The nature of Earth’s building blocks as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145CrossRefGoogle Scholar
  991. Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Mineral 16:445–489Google Scholar
  992. Valley JW (2001) Stable isotope thermometry at high temperatures. Rev Mineral Geochem 43:365–413CrossRefGoogle Scholar
  993. Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385CrossRefGoogle Scholar
  994. Valley JW, Bohlen SR, Essene EJ, Lamb W (1990) Metamorphism in the Adirondacks. II. J Petrol 31:555–596CrossRefGoogle Scholar
  995. Valley JW, Eiler JM, Graham CM, Gibson EK, Romanek CS, Stolper EM (1997) Low temperature carbonate concretions in the martian meteorite ALH 84001: evidence from stable isotopes and mineralogy. Science 275:1633–1637CrossRefGoogle Scholar
  996. Valley JW et al (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios in magmatic zircon. Contr Mineral Petrol 150:561–580CrossRefGoogle Scholar
  997. Vasconcelos C, Mackenzie JA, Warthmann R, Bernasconi S (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320CrossRefGoogle Scholar
  998. Vazquez R, Vennemann TW, Kesler SE, Russell N (1998) Carbon and oxygen isotope halos in the host limestone, El Mochito Zn, Pb (Ag) skarn massive sulfide/oxide deposit, Honduras. Econ Geol 93:15–31CrossRefGoogle Scholar
  999. Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395CrossRefGoogle Scholar
  1000. Veizer J et al (1997) Oxygen isotope evolution of Phanerozoic seawater. Palaeo, Palaeo, Palaeo 132:159–172CrossRefGoogle Scholar
  1001. Veizer J et al (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:37–57CrossRefGoogle Scholar
  1002. VennemannTW Smith HS (1992) Stable isotope profile across the orthoamphibole isograd in the Southern Marginal Zone of the Limpopo Belt, S Africa. Precambrian Res 55:365–397CrossRefGoogle Scholar
  1003. Vennemann TW, Kesler SE, O’Neil JR (1992) Stable isotope composition of quartz pebbles and their fluid inclusions as tracers of sediment provenance: implications for gold- and uranium-bearing quartz pebble conglomerates. Geology 20:837–840CrossRefGoogle Scholar
  1004. Vennemann TW, Kesler SE, Frederickson GC, Minter WEL, Heine RR (1996) Oxygen isotope sedimentology of gold and uranium-bearing Witwatersrand and Huronian Supergroup quartz pebble conglomerates. Econ Geol 91:322–342CrossRefGoogle Scholar
  1005. Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336CrossRefGoogle Scholar
  1006. Ventura GT, Gall L, Siebert C, Prytulak J, Szatmari P, Hürlimann M, Halliday AN (2015) The stable isotope composition of vanadium, nickel and molybdenum in crude oils. Appl Geochem 59:104–117CrossRefGoogle Scholar
  1007. Viers J et al (2007) Evidence of Zn isotope fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137CrossRefGoogle Scholar
  1008. Villanueva GL, Mumma MJ, Novak RE, Käufl HU, Hartogh P, Encrenaz T, Tokunaga A, Khayat A, Smith MD (2015) Strong water anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348:218–221CrossRefGoogle Scholar
  1009. Virtasalo JJ, Whitehouse MJ, Kotilainen AT (2013) Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows. Geology 41:39–42CrossRefGoogle Scholar
  1010. Voegelin AR, Nägler TF, Beukes NJ, Lacassie JP (2010) Molybdenum isotopes in late Archean carbonate rocks: implications for early Earth oxygenation. Precambr Res 182:70–82CrossRefGoogle Scholar
  1011. Von Grafenstein U, Erlenkeuser H, Trimborn P (1999) Oxygen and carbon isotopes in fresh-water ostracod valves: assessing vital offsets and autoecological effects of interest for paleoclimate studies. Palaeo, Palaeo, Palaeo 148:133–152CrossRefGoogle Scholar
  1012. Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Emperical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144