Advertisement

An Investigation of the Chaotic Transient for a Boundary Crisis in the Fermi-Ulam Model

  • Edson D. Leonel
  • Murilo F. Marques
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 22)

Abstract

Investigation of some statistical properties for a chaotic transient in a Fermi-Ulam model observed after a boundary crisis is considered in this chapter. The crisis is produced by a crossing of a stable and unstable manifold generated from the same saddle fixed point, hence creating also a homoclinic crossing. The system consists of a classical particle bouncing between two rigid and infinitely heavy walls. One of them is fixed while the other one is moving periodically in time. The dynamics of the system is given by a two-dimensional, nonlinear area-contracting map for the variables velocity of the particle immediately after a collision with the moving wall and time after such a collision. The collisions are assumed to be inelastic, hence a fractional loss of energy is observed leading to the existence of attractors in the phase space.

Notes

Acknowledgements

EDL acknowledges the support from CNPq (303707/2015-1), FAPESP (2017/14414-2), and FUNDUNESP. MFM thanks to CNPq and CAPES for support.

References

  1. 1.
    Lichtenberg, A. J., & Lieberman, M. A. (1992). Regular and chaotic dynamics. Applied mathematical sciences (Vol. 38). New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Hilborn, R. C. (1986). Chaos and nonlinear dynamics. New York: Oxford University Press.zbMATHGoogle Scholar
  3. 3.
    Tabor, M. (1989). Chaos and integrability in nonlinear dynamics: An introduction. New York: Wiley.zbMATHGoogle Scholar
  4. 4.
    Livorati, A. L. P., Kroetz, T., Dettmann, C. P., Caldas, I. L., & Leonel, E. D. (2012). Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Physical Review E, 86, 036203.CrossRefGoogle Scholar
  5. 5.
    Leonel, E. D. (2007). Corrugated waveguide under scaling investigation. Physical Review Letters, 98, 114102.CrossRefGoogle Scholar
  6. 6.
    Leonel, E. D., & McClintock, P. V. E. (2005). A hybrid Fermi Ulam-bouncer model. Journal of Physics A: Mathematical and General, 38, 823.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leonel, E. D. (2016). Defining universality classes for three different local bifurcations. Communications in Nonlinear Science and Numerical Simulation, 39, 520.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Teixeira, R. M. N., Rando, D. S., Geraldo, F. C., Costa Filho, R. N., de Oliveira, J. A., & Leonel, E. D. (2015). Convergence towards asymptotic state in 1-D mappings: A scaling investigation. Physics Letters A, 379, 1246.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Leonel, E. D., Teixeira, R. M. N., Rando, D. S., Costa Filho, R. N., & Oliveira, J. A. (2015). Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]. Physics Letters A, 379, 1796.Google Scholar
  10. 10.
    Ott, E. (2002). Chaos in dynamical systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. 11.
    Strogatz, S. H. (2015). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Bolder: Westview Press.zbMATHGoogle Scholar
  12. 12.
    Grebogi, C., Ott, E., & Yorke, J. A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems. Physical Review Letters, 57, 1284.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grebogi, C., Ott, E., Romeiras, F., & Yorke, J. A. (1987). Critical exponents for crisis-induced intermittency. Physical Review A, 36, 5365.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grebogi, C., Ott, E., & Yorke, J. A. (1982). Chaotic attractors in crisis. Physical Review Letters, 48, 1507.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fermi, E. (1949). On the origin of the cosmic radiation. Physical Review, 75, 1169.CrossRefGoogle Scholar
  16. 16.
    Lichtenberg, A. J., Lieberman, M. A., & Cohen, R. H. (1980). Fermi acceleration revisited. Physica D, 1, 291.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Leonel, E. D., McClintock, P. V. E., & Silva, J. K. L. (2004). Fermi-Ulam accelerator model under scaling analysis. Physical Review Letters, 93, 014101.CrossRefGoogle Scholar
  18. 18.
    Silva, J. K. L., Ladeira, D. G., Leonel, E. D., McClintock, P. V. E., & Kamphorst, S. O. (2006). Scaling properties of the Fermi-Ulam accelerator model. Brazilian Journal of Physics, 36, 700.CrossRefGoogle Scholar
  19. 19.
    Leonel, E. D., & McClintock, P. V. E. (2005). A crisis in the dissipative Fermi accelerator model. Journal of Physics. A, Mathematical and General, 38, L425.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sussman, G. J., Wisdom, J., & Mayer, M. E. (2001). Structure and interpretation of classical mechanics. Cambridge: MIT Press.zbMATHGoogle Scholar
  21. 21.
    Tavares, D. F., & Leonel, E. D. (2008). A simplied Fermi accelerator model under quadratic frictional force. Brazilian Journal of Physics, 38, 58.CrossRefGoogle Scholar
  22. 22.
    Leonel, E. D., & Carvalho, R. E. (2007). A family of crisis in a dissipative Fermi accelerator model. Physics Letters A, 364, 475.CrossRefGoogle Scholar
  23. 23.
    Eckmann, J.-P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Souza, S. L. T., & Caldas, I. L. (2001). Basins of attraction and transient chaos in a gear-rattling model. Journal of Vibration and Control, 7, 849.CrossRefGoogle Scholar
  25. 25.
    Souza, S. L. T., Caldas, I. L., Viana, R. L., & Balthazar, J. M. (2004). Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes. Chaos, Solitons, and Fractals, 21, 763.CrossRefGoogle Scholar
  26. 26.
    Luck, J. M., & Mehta, A. (1993). Bouncing ball with a finite restitution: Chattering, locking, and chaos. Physical Review E, 48, 3988.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Leonel, E. D., Silva, J. K. L., & Kamphorst, S. O. (2004). On the dynamical properties of a Fermi accelerator model. Physica A, 331, 435.CrossRefGoogle Scholar
  28. 28.
    Galor, O. (2007). Discrete dynamical systems. Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUNESP - Univ Estadual PaulistaRio ClaroBrazil

Personalised recommendations