Skip to main content

An Investigation of the Chaotic Transient for a Boundary Crisis in the Fermi-Ulam Model

  • Chapter
  • First Online:
A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

  • 1352 Accesses

Abstract

Investigation of some statistical properties for a chaotic transient in a Fermi-Ulam model observed after a boundary crisis is considered in this chapter. The crisis is produced by a crossing of a stable and unstable manifold generated from the same saddle fixed point, hence creating also a homoclinic crossing. The system consists of a classical particle bouncing between two rigid and infinitely heavy walls. One of them is fixed while the other one is moving periodically in time. The dynamics of the system is given by a two-dimensional, nonlinear area-contracting map for the variables velocity of the particle immediately after a collision with the moving wall and time after such a collision. The collisions are assumed to be inelastic, hence a fractional loss of energy is observed leading to the existence of attractors in the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Depending on the type of the fixed points born at the bifurcations as well as their stability, the pitchfork bifurcation can be classified as supercritical or subcritical.

  2. 2.

    By local chaos we want to say the chaos observed is confined by invariant spanning curves. In a situation of global chaos the particle can diffuse unlimitedly in the velocity axis therefore leading to a phenomena called as Fermi acceleration. A prototype system exhibiting such phenomena is an analogous 1-D model called as a bouncer. The only difference from the Fermi-Ulam model is the returning mechanism for a further collision. In the Fermi-Ulam it is provided by a fixed wall whereas in the bouncer it is due to the gravitational field only.

  3. 3.

    Indeed it is an asymptotically stable focus.

  4. 4.

    Direct collisions are defined as the collisions the particle has with the moving wall without leaving the collision zone, a region defined by x ∈ [−ε,  +ε].

  5. 5.

    In an indirect collision a particle leaves the collision zone, collides with the fixed wall, and is rebounded back for a further collision with the moving wall.

  6. 6.

    This set of control parameters was chosen just before the crisis.

  7. 7.

    Such condition is given by solution of G(ϕ c ) in mapping (6.1).

References

  1. Lichtenberg, A. J., & Lieberman, M. A. (1992). Regular and chaotic dynamics. Applied mathematical sciences (Vol. 38). New York: Springer.

    Book  Google Scholar 

  2. Hilborn, R. C. (1986). Chaos and nonlinear dynamics. New York: Oxford University Press.

    MATH  Google Scholar 

  3. Tabor, M. (1989). Chaos and integrability in nonlinear dynamics: An introduction. New York: Wiley.

    MATH  Google Scholar 

  4. Livorati, A. L. P., Kroetz, T., Dettmann, C. P., Caldas, I. L., & Leonel, E. D. (2012). Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Physical Review E, 86, 036203.

    Article  Google Scholar 

  5. Leonel, E. D. (2007). Corrugated waveguide under scaling investigation. Physical Review Letters, 98, 114102.

    Article  Google Scholar 

  6. Leonel, E. D., & McClintock, P. V. E. (2005). A hybrid Fermi Ulam-bouncer model. Journal of Physics A: Mathematical and General, 38, 823.

    Article  MathSciNet  Google Scholar 

  7. Leonel, E. D. (2016). Defining universality classes for three different local bifurcations. Communications in Nonlinear Science and Numerical Simulation, 39, 520.

    Article  MathSciNet  Google Scholar 

  8. Teixeira, R. M. N., Rando, D. S., Geraldo, F. C., Costa Filho, R. N., de Oliveira, J. A., & Leonel, E. D. (2015). Convergence towards asymptotic state in 1-D mappings: A scaling investigation. Physics Letters A, 379, 1246.

    Article  MathSciNet  Google Scholar 

  9. Leonel, E. D., Teixeira, R. M. N., Rando, D. S., Costa Filho, R. N., & Oliveira, J. A. (2015). Addendum to: Convergence towards asymptotic state in 1-D mappings: A scaling investigation [Phys. Lett. A 379 (2015) 1246]. Physics Letters A, 379, 1796.

    Google Scholar 

  10. Ott, E. (2002). Chaos in dynamical systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. Strogatz, S. H. (2015). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Bolder: Westview Press.

    MATH  Google Scholar 

  12. Grebogi, C., Ott, E., & Yorke, J. A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems. Physical Review Letters, 57, 1284.

    Article  MathSciNet  Google Scholar 

  13. Grebogi, C., Ott, E., Romeiras, F., & Yorke, J. A. (1987). Critical exponents for crisis-induced intermittency. Physical Review A, 36, 5365.

    Article  MathSciNet  Google Scholar 

  14. Grebogi, C., Ott, E., & Yorke, J. A. (1982). Chaotic attractors in crisis. Physical Review Letters, 48, 1507.

    Article  MathSciNet  Google Scholar 

  15. Fermi, E. (1949). On the origin of the cosmic radiation. Physical Review, 75, 1169.

    Article  Google Scholar 

  16. Lichtenberg, A. J., Lieberman, M. A., & Cohen, R. H. (1980). Fermi acceleration revisited. Physica D, 1, 291.

    Article  MathSciNet  Google Scholar 

  17. Leonel, E. D., McClintock, P. V. E., & Silva, J. K. L. (2004). Fermi-Ulam accelerator model under scaling analysis. Physical Review Letters, 93, 014101.

    Article  Google Scholar 

  18. Silva, J. K. L., Ladeira, D. G., Leonel, E. D., McClintock, P. V. E., & Kamphorst, S. O. (2006). Scaling properties of the Fermi-Ulam accelerator model. Brazilian Journal of Physics, 36, 700.

    Article  Google Scholar 

  19. Leonel, E. D., & McClintock, P. V. E. (2005). A crisis in the dissipative Fermi accelerator model. Journal of Physics. A, Mathematical and General, 38, L425.

    Article  MathSciNet  Google Scholar 

  20. Sussman, G. J., Wisdom, J., & Mayer, M. E. (2001). Structure and interpretation of classical mechanics. Cambridge: MIT Press.

    MATH  Google Scholar 

  21. Tavares, D. F., & Leonel, E. D. (2008). A simplied Fermi accelerator model under quadratic frictional force. Brazilian Journal of Physics, 38, 58.

    Article  Google Scholar 

  22. Leonel, E. D., & Carvalho, R. E. (2007). A family of crisis in a dissipative Fermi accelerator model. Physics Letters A, 364, 475.

    Article  Google Scholar 

  23. Eckmann, J.-P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617.

    Article  MathSciNet  Google Scholar 

  24. Souza, S. L. T., & Caldas, I. L. (2001). Basins of attraction and transient chaos in a gear-rattling model. Journal of Vibration and Control, 7, 849.

    Article  Google Scholar 

  25. Souza, S. L. T., Caldas, I. L., Viana, R. L., & Balthazar, J. M. (2004). Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes. Chaos, Solitons, and Fractals, 21, 763.

    Article  Google Scholar 

  26. Luck, J. M., & Mehta, A. (1993). Bouncing ball with a finite restitution: Chattering, locking, and chaos. Physical Review E, 48, 3988.

    Article  MathSciNet  Google Scholar 

  27. Leonel, E. D., Silva, J. K. L., & Kamphorst, S. O. (2004). On the dynamical properties of a Fermi accelerator model. Physica A, 331, 435.

    Article  Google Scholar 

  28. Galor, O. (2007). Discrete dynamical systems. Heidelberg: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

EDL acknowledges the support from CNPq (303707/2015-1), FAPESP (2017/14414-2), and FUNDUNESP. MFM thanks to CNPq and CAPES for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson D. Leonel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonel, E.D., Marques, M.F. (2019). An Investigation of the Chaotic Transient for a Boundary Crisis in the Fermi-Ulam Model. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics