Advertisement

On Symmetries and Conservation Laws for a Generalized Fisher–Kolmogorov–Petrovsky–Piskunov Equation

  • María Luz Gandarias
  • María de los Santos Bruzón
  • María Rosa
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 22)

Abstract

This chapter presents a generalized Fisher equation (GFE) from the point of view of the theory of symmetry reductions in partial differential equations. The GFE can be used to describe an ideal growth and spatial-diffusion phenomena. The reductions to ordinary differential equations are derived from the optimal system of subalgebras and new exact solutions are obtained. Conservation laws for this equation are constructed. The potential system has been achieved from the complete list of the conservation laws. Potential symmetries, which are not local symmetries, are carried out for the generalized Fisher equation, these symmetries lead to the linearization of the equation by non-invertible mappings.

Notes

Acknowledgements

The authors warmly thank the anonymous referees for careful reading of the manuscript, and for providing excellent suggestions to improve the quality of the paper. They also acknowledge the financial support from Junta de Andalucía FQM-201 group, and from University of Cádiz Plan Propio de Investigación and project PR2016-097. M.S. Bruzón and M.L. Gandarias warmly thank the Organizing Committee of NSC-2016.

References

  1. 1.
    Adem, K. R., & Khalique, C. M. (2015). Symmetry analysis and conservation laws of a generalized two-dimensional nonlinear KP-MEW equation. Mathematical Problems in Engineering, 2015, Article ID 805763.Google Scholar
  2. 2.
    Anco, S. C., & Bluman, G. (2002). Direct construction method for conservation laws for partial differential equations Part II: General treatment. European Journal of Applied mathematics, 41, 567–585.MATHGoogle Scholar
  3. 3.
    Bluman, G., & Cole, J. (1974). Similarity methods for differential equations. Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Bluman, G., Reid, G., & Kumei, S. (1988). New classes of symmetries for partial differential equations. Journal of Mathematical Physics, 29, 806–811.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bluman, G. W., & Kumei, S. (1989). Symmetries and differential equations. Berlin: Springer.CrossRefGoogle Scholar
  6. 6.
    Bluman, G. W., & Kumei, S. (1990). Symmetry-based algorithms to relate partial differential equations: I. Local symmetries. European Journal of Applied mathematics, 1, 189–216.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bokhari, A. H., Mustafá, M. T., & Zaman, F. D. (2008). An exact solution of a quasilinear Fisher equation in cylindrical coordinates. Nonlinear Analysis, 69, 4803–4805.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bokhari, A. H., Al-Rubaee, R. A., & Zaman, F. D. (2011). On a generalized Fisher equation. Communications in Nonlinear Science and Numerical Simulation, 16, 2689–2695.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruzón, M. S., Gandarias, M. L., & De la Rosa, R. (2014). Conservation laws of a family of reaction-diffusion-convection equations. Localized excitation nonlinear complex systems (pp. 403–417). Cham: Springer.MATHGoogle Scholar
  10. 10.
    Cherniha, R., & Serov, M. (1998). Symmetries, Ansätzae and exact solutions of nonlinear second-order evolution equations with convection term. European Journal of Applied mathematics, 9, 527–542.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cherniha, R., & Serov, M. (2006). Symmetries, Ansätzae and exact solutions of nonlinear second-order evolution equations with convection term II. European Journal of Applied mathematics, 17, 597–605.MathSciNetCrossRefGoogle Scholar
  12. 12.
    De la Rosa, R., Gandarias, M., & Bruzón, M. S. (2016). Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 40, 71–79.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Euler, N., & Euler, M. (2009). On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies. Journal of Nonlinear Mathematical Physics, 6, 489–504.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369.CrossRefGoogle Scholar
  15. 15.
    Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445–466.CrossRefGoogle Scholar
  16. 16.
    Gandarias, M. L. (2011). Weak self-adjoint differential equations. Journal of Physics A: Mathematical and Theoretical, 44, 262001.CrossRefGoogle Scholar
  17. 17.
    Gandarias, M. L. (2014). Nonlinear self-adjointness through differential substitutions. Communications in Nonlinear Science and Numerical Simulation, 19, 3523–3528.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gandarias, M. L., & Khalique, C. M. (2016). Symmetries solutions and conservation laws of a class of nonlinear dispersive wave equations. Communications in Nonlinear Science and Numerical Simulation, 32, 114–121.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2013). Nonlinear self-adjointness and conservation laws for a generalized Fisher equation. Communications in Nonlinear Science and Numerical Simulation, 18(7), 1600–1606.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2015). Symmetries and conservation laws for some compacton equation. Mathematical Problems in Engineering, 2015, Article ID 430823.Google Scholar
  21. 21.
    Gandarias, M.L., & Rosa, M. (2016). On double reductions from symmetries and conservation laws for a damped Boussinesq equation. Chaos, Solitons and Fractals, 89, 560–565.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ibragimov, N. H. (2006). The answer to the question put to me by L.V. Ovsyannikov 33 years ago. In Archives of ALGA (Vol. 3, p. 80). Karlskrona: ALGA Publications.Google Scholar
  23. 23.
    Ibragimov, N. H. (2011). Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical, 44, 432002.CrossRefGoogle Scholar
  24. 24.
    Kolmogorov, A. N., Petrovsky, I. G., & Piskunov, N. S. (1937). Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Bulletin of the Moscow State University Series A: Mathematics and Mechanics, 1(6), 1–25.Google Scholar
  25. 25.
    Krasilshchik, I., Vinogradov, A. (1989). Symmetry and integrability by quadratures of ordinary differential equations. Acta Applicandae Mathematicae, 15, 161–209.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kudryashov, N. A. (2005). Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons and Fractals, 24, 1217–1231.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lie, S. (1881). On integration of a class of linear partial differential equations by means of definite integrals, translation by N.H. Ibragimov. Archiv der Mathematik, 6, 328–368.Google Scholar
  28. 28.
    Moitsheki, R. J., & Makinde, O. D. (2010). Classical Lie point symmetry analysis of nonlinear diffusion equations describing thermal energy storage. Applied Mathematics and Computation, 216, 251–260.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Murray, J. D. (2002). Mathematical biology (3rd ed.). New York: Springer.MATHGoogle Scholar
  30. 30.
    Nagumo, J. S., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50, 2061–2071.CrossRefGoogle Scholar
  31. 31.
    Olver, P. J. (1986). Applications of Lie groups to differential equations. Berlin: Springer.CrossRefGoogle Scholar
  32. 32.
    Ovsiannikov, L. V. (1959). Group relations of the equation of nonlinear heat conductivity. Doklady Akademii Nauk SSSR, 125, 492–495.MathSciNetGoogle Scholar
  33. 33.
    Rosa, M., & Gandarias, M. L. (2016). Multiplier method and exact solutions for a density dependent reaction-diffusion equation. Applied Mathematics and Nonlinear Sciences, 1(2), 311–320.CrossRefGoogle Scholar
  34. 34.
    Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2015). Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates. Communications in Nonlinear Science and Numerical Simulation, 25, 74–83.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2014). A conservation law for a generalized chemical Fisher equation. Journal of Mathematical Chemistry, 53, 941–948.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2015). Lie symmetry analysis and conservation laws for a Fisher equation with variable coefficients. Applied Mathematics and Information Sciences, 9(6), 2783–2792.MathSciNetGoogle Scholar
  37. 37.
    Rosa, M., Camacho, J. C., Bruzón, M. S., & Gandarias, M. L. (2017). Classical and potential symmetries for a generalized Fisher equation. Journal of Computational and Applied Mathematics, 318, 181–188.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Tracinà, R., Bruzón, M. S., & Gandarias, M. L. (2016). On the nonlinear self-adjointness of a class of fourth-order evolution equations. Applied Mathematics and Computation, 275, 299–304.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Tracinà, R., Freire, I. L., & Torrisi, M. (2016). Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. Communications in Nonlinear Science and Numerical Simulation, 32, 225–233.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Vitanov, N. K. (2011). Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs. Communications in Nonlinear Science and Numerical Simulation, 16, 1176–1185.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zeldovich, Y., & Frank-Kamenetskii, D. A. (1938). A theory of thermal propagation of flame. Acta Physicochimica USSR, 9, 341–350.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • María Luz Gandarias
    • 1
  • María de los Santos Bruzón
    • 1
  • María Rosa
    • 1
  1. 1.Departamento de MatemáticasUniversidad de CádizCádizSpain

Personalised recommendations