Skip to main content

On Symmetries and Conservation Laws for a Generalized Fisher–Kolmogorov–Petrovsky–Piskunov Equation

  • Chapter
  • First Online:
A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

  • 1393 Accesses

Abstract

This chapter presents a generalized Fisher equation (GFE) from the point of view of the theory of symmetry reductions in partial differential equations. The GFE can be used to describe an ideal growth and spatial-diffusion phenomena. The reductions to ordinary differential equations are derived from the optimal system of subalgebras and new exact solutions are obtained. Conservation laws for this equation are constructed. The potential system has been achieved from the complete list of the conservation laws. Potential symmetries, which are not local symmetries, are carried out for the generalized Fisher equation, these symmetries lead to the linearization of the equation by non-invertible mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adem, K. R., & Khalique, C. M. (2015). Symmetry analysis and conservation laws of a generalized two-dimensional nonlinear KP-MEW equation. Mathematical Problems in Engineering, 2015, Article ID 805763.

    Google Scholar 

  2. Anco, S. C., & Bluman, G. (2002). Direct construction method for conservation laws for partial differential equations Part II: General treatment. European Journal of Applied mathematics, 41, 567–585.

    MATH  Google Scholar 

  3. Bluman, G., & Cole, J. (1974). Similarity methods for differential equations. Berlin: Springer.

    Book  Google Scholar 

  4. Bluman, G., Reid, G., & Kumei, S. (1988). New classes of symmetries for partial differential equations. Journal of Mathematical Physics, 29, 806–811.

    Article  MathSciNet  Google Scholar 

  5. Bluman, G. W., & Kumei, S. (1989). Symmetries and differential equations. Berlin: Springer.

    Book  Google Scholar 

  6. Bluman, G. W., & Kumei, S. (1990). Symmetry-based algorithms to relate partial differential equations: I. Local symmetries. European Journal of Applied mathematics, 1, 189–216.

    Article  MathSciNet  Google Scholar 

  7. Bokhari, A. H., Mustafá, M. T., & Zaman, F. D. (2008). An exact solution of a quasilinear Fisher equation in cylindrical coordinates. Nonlinear Analysis, 69, 4803–4805.

    Article  MathSciNet  Google Scholar 

  8. Bokhari, A. H., Al-Rubaee, R. A., & Zaman, F. D. (2011). On a generalized Fisher equation. Communications in Nonlinear Science and Numerical Simulation, 16, 2689–2695.

    Article  MathSciNet  Google Scholar 

  9. Bruzón, M. S., Gandarias, M. L., & De la Rosa, R. (2014). Conservation laws of a family of reaction-diffusion-convection equations. Localized excitation nonlinear complex systems (pp. 403–417). Cham: Springer.

    MATH  Google Scholar 

  10. Cherniha, R., & Serov, M. (1998). Symmetries, Ansätzae and exact solutions of nonlinear second-order evolution equations with convection term. European Journal of Applied mathematics, 9, 527–542.

    Article  MathSciNet  Google Scholar 

  11. Cherniha, R., & Serov, M. (2006). Symmetries, Ansätzae and exact solutions of nonlinear second-order evolution equations with convection term II. European Journal of Applied mathematics, 17, 597–605.

    Article  MathSciNet  Google Scholar 

  12. De la Rosa, R., Gandarias, M., & Bruzón, M. S. (2016). Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 40, 71–79.

    Article  MathSciNet  Google Scholar 

  13. Euler, N., & Euler, M. (2009). On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies. Journal of Nonlinear Mathematical Physics, 6, 489–504.

    Article  MathSciNet  Google Scholar 

  14. Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369.

    Article  Google Scholar 

  15. Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445–466.

    Article  Google Scholar 

  16. Gandarias, M. L. (2011). Weak self-adjoint differential equations. Journal of Physics A: Mathematical and Theoretical, 44, 262001.

    Article  Google Scholar 

  17. Gandarias, M. L. (2014). Nonlinear self-adjointness through differential substitutions. Communications in Nonlinear Science and Numerical Simulation, 19, 3523–3528.

    Article  MathSciNet  Google Scholar 

  18. Gandarias, M. L., & Khalique, C. M. (2016). Symmetries solutions and conservation laws of a class of nonlinear dispersive wave equations. Communications in Nonlinear Science and Numerical Simulation, 32, 114–121.

    Article  MathSciNet  Google Scholar 

  19. Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2013). Nonlinear self-adjointness and conservation laws for a generalized Fisher equation. Communications in Nonlinear Science and Numerical Simulation, 18(7), 1600–1606.

    Article  MathSciNet  Google Scholar 

  20. Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2015). Symmetries and conservation laws for some compacton equation. Mathematical Problems in Engineering, 2015, Article ID 430823.

    Google Scholar 

  21. Gandarias, M.L., & Rosa, M. (2016). On double reductions from symmetries and conservation laws for a damped Boussinesq equation. Chaos, Solitons and Fractals, 89, 560–565.

    Article  MathSciNet  Google Scholar 

  22. Ibragimov, N. H. (2006). The answer to the question put to me by L.V. Ovsyannikov 33 years ago. In Archives of ALGA (Vol. 3, p. 80). Karlskrona: ALGA Publications.

    Google Scholar 

  23. Ibragimov, N. H. (2011). Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical, 44, 432002.

    Article  Google Scholar 

  24. Kolmogorov, A. N., Petrovsky, I. G., & Piskunov, N. S. (1937). Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Bulletin of the Moscow State University Series A: Mathematics and Mechanics, 1(6), 1–25.

    Google Scholar 

  25. Krasilshchik, I., Vinogradov, A. (1989). Symmetry and integrability by quadratures of ordinary differential equations. Acta Applicandae Mathematicae, 15, 161–209.

    Article  MathSciNet  Google Scholar 

  26. Kudryashov, N. A. (2005). Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons and Fractals, 24, 1217–1231.

    Article  MathSciNet  Google Scholar 

  27. Lie, S. (1881). On integration of a class of linear partial differential equations by means of definite integrals, translation by N.H. Ibragimov. Archiv der Mathematik, 6, 328–368.

    Google Scholar 

  28. Moitsheki, R. J., & Makinde, O. D. (2010). Classical Lie point symmetry analysis of nonlinear diffusion equations describing thermal energy storage. Applied Mathematics and Computation, 216, 251–260.

    Article  MathSciNet  Google Scholar 

  29. Murray, J. D. (2002). Mathematical biology (3rd ed.). New York: Springer.

    MATH  Google Scholar 

  30. Nagumo, J. S., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50, 2061–2071.

    Article  Google Scholar 

  31. Olver, P. J. (1986). Applications of Lie groups to differential equations. Berlin: Springer.

    Book  Google Scholar 

  32. Ovsiannikov, L. V. (1959). Group relations of the equation of nonlinear heat conductivity. Doklady Akademii Nauk SSSR, 125, 492–495.

    MathSciNet  Google Scholar 

  33. Rosa, M., & Gandarias, M. L. (2016). Multiplier method and exact solutions for a density dependent reaction-diffusion equation. Applied Mathematics and Nonlinear Sciences, 1(2), 311–320.

    Article  Google Scholar 

  34. Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2015). Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates. Communications in Nonlinear Science and Numerical Simulation, 25, 74–83.

    Article  MathSciNet  Google Scholar 

  35. Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2014). A conservation law for a generalized chemical Fisher equation. Journal of Mathematical Chemistry, 53, 941–948.

    Article  MathSciNet  Google Scholar 

  36. Rosa, M., Bruzón, M. S., & Gandarias, M. L. (2015). Lie symmetry analysis and conservation laws for a Fisher equation with variable coefficients. Applied Mathematics and Information Sciences, 9(6), 2783–2792.

    MathSciNet  Google Scholar 

  37. Rosa, M., Camacho, J. C., Bruzón, M. S., & Gandarias, M. L. (2017). Classical and potential symmetries for a generalized Fisher equation. Journal of Computational and Applied Mathematics, 318, 181–188.

    Article  MathSciNet  Google Scholar 

  38. Tracinà, R., Bruzón, M. S., & Gandarias, M. L. (2016). On the nonlinear self-adjointness of a class of fourth-order evolution equations. Applied Mathematics and Computation, 275, 299–304.

    Article  MathSciNet  Google Scholar 

  39. Tracinà, R., Freire, I. L., & Torrisi, M. (2016). Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. Communications in Nonlinear Science and Numerical Simulation, 32, 225–233.

    Article  MathSciNet  Google Scholar 

  40. Vitanov, N. K. (2011). Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs. Communications in Nonlinear Science and Numerical Simulation, 16, 1176–1185.

    Article  MathSciNet  Google Scholar 

  41. Zeldovich, Y., & Frank-Kamenetskii, D. A. (1938). A theory of thermal propagation of flame. Acta Physicochimica USSR, 9, 341–350.

    Google Scholar 

Download references

Acknowledgements

The authors warmly thank the anonymous referees for careful reading of the manuscript, and for providing excellent suggestions to improve the quality of the paper. They also acknowledge the financial support from Junta de Andalucía FQM-201 group, and from University of Cádiz Plan Propio de Investigación and project PR2016-097. M.S. Bruzón and M.L. Gandarias warmly thank the Organizing Committee of NSC-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luz Gandarias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandarias, M.L., de los Santos Bruzón, M., Rosa, M. (2019). On Symmetries and Conservation Laws for a Generalized Fisher–Kolmogorov–Petrovsky–Piskunov Equation. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics