Advertisement

Network Centrality: An Introduction

  • Francisco Aparecido Rodrigues
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 22)

Abstract

Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.

Notes

Acknowledgements

The author thanks José Fernando Fontanari for useful comments. This work was funded in part by CNPq (grant 305940/2010-4) and FAPESP (grants 2016/25682-5 and grants 2013/07375-0).

References

  1. 1.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.CrossRefGoogle Scholar
  2. 2.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Physics Reports, 469(3), 93–153.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bar-Yam, Y. (1997). Dynamics of complex systems (Vol. 213). Reading: Addison-Wesley.zbMATHGoogle Scholar
  4. 4.
    Barabási, A.-L. (2016). Network science. New York: Cambridge University Press.zbMATHGoogle Scholar
  5. 5.
    Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.CrossRefGoogle Scholar
  10. 10.
    Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh International Conference on World Wide Web 7, WWW7 (pp. 107–117). Amsterdam: Elsevier.Google Scholar
  11. 11.
    da Fontoura Costa, L., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.CrossRefGoogle Scholar
  12. 12.
    da Fontoura Costa, L., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L., et al. (2011). Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.CrossRefGoogle Scholar
  13. 13.
    de Arruda, G. F., da Fontoura Costa, L., Schubert, D., & Rodrigues, F. A. (2014). Structure and dynamics of functional networks in child-onset schizophrenia. Clinical Neurophysiology, 125(8), 1589–1595.CrossRefGoogle Scholar
  14. 14.
    De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., & Arenas, A. (2013). Centrality in interconnected multilayer networks. Preprint. arXiv:1311.2906.Google Scholar
  15. 15.
    Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The backbone of the climate network. Europhysics Letters, 87(4), 48007.CrossRefGoogle Scholar
  16. 16.
    Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2006). K-core organization of complex networks. Physical Review Letters, 96(4), 040601.CrossRefGoogle Scholar
  17. 17.
    Fagiolo, G., Reyes, J., & Schiavo, S. (2009). World-trade web: Topological properties, dynamics, and evolution. Physical Review E, 79(3), 036115.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.CrossRefGoogle Scholar
  20. 20.
    Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the National Academy of Sciences, 104(21), 8685–8690.CrossRefGoogle Scholar
  21. 21.
    Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., & Moreno, Y. (2010). Discrete-time Markov chain approach to contact-based disease spreading in complex networks. Europhysics Letters, 89(3), 38009.CrossRefGoogle Scholar
  22. 22.
    Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y. (2011). Explosive synchronization transitions in scale-free networks. Physical Review Letters, 106(12), 128701.CrossRefGoogle Scholar
  23. 23.
    Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, 102(22), 7794–7799.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.CrossRefGoogle Scholar
  25. 25.
    Ichinomiya, T. (2004). Frequency synchronization in a random oscillator network. Physical Review E, 70, 026116.CrossRefGoogle Scholar
  26. 26.
    Jeong, H., Mason, S. P., Barabási, A.-L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41.CrossRefGoogle Scholar
  27. 27.
    Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  28. 28.
    Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888.CrossRefGoogle Scholar
  29. 29.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.CrossRefGoogle Scholar
  30. 30.
    Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., et al. (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52), 20935–20940.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Martin, T., Zhang, X., & Newman, M. E. J. (2014). Localization and centrality in networks. Physical review E, 90(5), 052808.CrossRefGoogle Scholar
  32. 32.
    Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.zbMATHGoogle Scholar
  33. 33.
    Newman, M. E. J. (2013). Spectral community detection in sparse networks. Preprint. arXiv:1308.6494.Google Scholar
  34. 34.
    Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54.CrossRefGoogle Scholar
  35. 35.
    Özgür, A., Vu, T., Erkan, G., & Radev, D. R. (2008). Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24(13), i277–i285.CrossRefGoogle Scholar
  36. 36.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  38. 38.
    Radicchi, F., & Castellano, C. (2016). Leveraging percolation theory to single out influential spreaders in networks. Physical Review E, 93(6), 062314.CrossRefGoogle Scholar
  39. 39.
    Reia, S. M., Herrmann, S., & Fontanari, J. F. (2017). Impact of centrality on cooperative processes. Physical Review E, 95(2), 022305.CrossRefGoogle Scholar
  40. 40.
    Restrepo, J. G., Ott, E., & Hunt, B. R. (2005). Onset of synchronization in large networks of coupled oscillators. Physical Review E, 71, 036151.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rodrigues, F. A., Peron, T. K. D. M., Ji, P., & Kurths, J. (2016). The Kuramoto model in complex networks. Physics Reports, 610, 1–98.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Schultz, P., Peron, T., Eroglu, D., Stemler, T., Ramírez Ávila, G. M., Rodrigues, F. A., et al. (2016). Tweaking synchronization by connectivity modifications. Physical Review E, 93(6), 062211.CrossRefGoogle Scholar
  43. 43.
    Strogatz, S. (2004). Sync: The emerging science of spontaneous order. London: Penguin.Google Scholar
  44. 44.
    Travençolo, B., & da Fontoura Costa, L. (2008). Accessibility in complex networks. Physics Letters A, 373(1), 89–95.CrossRefGoogle Scholar
  45. 45.
    Travençolo, B. A. N., Viana, M. P., & da Fontoura Costa, L. (2009). Border detection in complex networks. New Journal of Physics, 11(6), 063019.CrossRefGoogle Scholar
  46. 46.
    Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.CrossRefGoogle Scholar
  47. 47.
    Wachi, S., Yoneda, K., & Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21(23), 4205–4208.CrossRefGoogle Scholar
  48. 48.
    Zuo, X.-N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., et al. (2011). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil

Personalised recommendations