Skip to main content

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

Abstract

Nonlinear dynamics is about systems whose dynamics is ruled by nonlinear algebraic or nonlinear differential equations. In regard to their physical behavior, the relationships between changes in their inputs and the resultant behavior in their outputs are not proportional to one another. This behavior characterizes them as nonlinear systems. A nonlinear system may present chaotic dynamics if its dynamics is on average exponentially sensitive to changes in its initial condition [1]. In this case, although generated by a deterministic system, a chaotic trajectory appears to be complicated and even resembles having random behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aristotle.

References

  1. Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos: An introduction to dynamical systems. New York: Springer.

    MATH  Google Scholar 

  2. Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Macau, E. E. N., & Grebogi, C. (1999). Driving trajectories in complex systems. Physical Review E, 59, 4062.

    Article  MathSciNet  Google Scholar 

  4. Badii, R., & Politi, A. (1999). Complexity: Hierarchical structures and scaling in physics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  5. Mitchell, M. (2011). Complexity: A guided tour. New York: Oxford University Press.

    MATH  Google Scholar 

  6. Bruzón, M. S., Gandarias, M. L., & de la Rosa, R. (2018). An overview of the generalized Gardner equation: Symmetry groups and conservation laws. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  7. Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2018). On symmetries and conservations laws for a generalized Fisher-Kolmogorov-Petrovsky-Piskunov equation. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  8. Livorati, A. L. P. (2018). Tunable orbits influence in a driven stadium-like billiard. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  9. Chimanski, E. V., Martins, C. G. L., Chertovskih, R., Rempel, E. L., Roberto, M., Caldas, I. L., et al. (2018). Intermittency and transport barriers in fluids. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  10. Leonel, E. D., & Marques, M. F. (2018). An investigation of the chaotic transient for a boundary crisis in the Fermi-Ulam model. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  11. Eisencraft, M., Evangelista, J. V. C., Costa, R. A., Fontes, R. T., Candido, R., Chaves, D. P. B., et al. (2018). New trends in chaos-based communications and signal processing. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  12. Ramírez-Ávila, G. M., Kurths, J., Depickère, S., & Deneubourg, J. L. (2018). Modeling fireflies synchronization. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  13. Algar, S. D., Stemler, T., & Small, M. (2018). From flocs to flocks. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  14. Donner, R. V., Lindner, M., Tupikina, L., & Mokkenthin, N. (2018). Characterizing flows by complex network methods. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

  15. Rodrigues, F. A. (2018). Network centrality: An introduction. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macau, E.E.N. (2019). From Nonlinear Dynamics to Complex Systems: Introduction. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics