Skip to main content

Advertisement

SpringerLink for Corporate & Health
Book cover

Clinical Text Mining pp 1–4Cite as

Introduction

Introduction

  • Hercules Dalianis2 
  • Chapter
  • Open Access
  • First Online: 15 May 2018
  • 17k Accesses

Abstract

This chapter gives a short introduction of the research area of clinical text mining.

Download chapter PDF

References

  • Allvin, H., Carlsson, E., Dalianis, H., Danielsson-Ojala, R., Daudaravicius, V., Hassel, M., et al. (2011). Characteristics of Finnish and Swedish intensive care nursing narratives: A comparative analysis to support the development of clinical language technologies. Journal of Biomedical Semantics, 2(Suppl 3), 1–11.

    CrossRef  Google Scholar 

  • Cohen, K. B., & Demner-Fushman, D. (2014). Biomedical Natural Language Processing (Vol. 11). Amsterdam: John Benjamins Publishing Company.

    CrossRef  Google Scholar 

  • Dalianis, H. (2014). Clinical text retrieval - An overview of basic building blocks and applications. In Professional Search in the Modern World (pp. 147–165). Berlin: Springer.

    Google Scholar 

  • Dalianis, H., Hassel, M., & Velupillai, S. (2009). The Stockholm EPR Corpus-characteristics and some initial findings. In Proceedings of ISHIMR 2009, Evaluation and Implementation of e-Health and Health Information Initiatives: International Perspectives. 14th International Symposium for Health Information Management Research (pp. 243–249).

    Google Scholar 

  • Ducel, G., Fabry, J., & Nicolle, L. (Eds.). (2002). Prevention of Hospital Acquired Infections: A Practical Guide., 2nd edn. World Health Organization. http://www.who.int/csr/resources/publications/drugresist/WHO_CDS_CSR_EPH_2002_12/en/. Accessed 11 Jan 2018.

  • Freeman, R., Moore, L. S. P., Álvarez, L. G., Charlett, A., & Holmes, A. (2013). Advances in electronic surveillance for healthcare-associated infections in the 21st century: A systematic review. Journal of Hospital Infection, 84(2), 106–119.

    CrossRef  Google Scholar 

  • Groopman, J. E. (2007). How Doctors Think. New York: Houghton Mifflin Company.

    Google Scholar 

  • Karimi, S., Wang, C., Metke-Jimenez, A., Gaire, R., & Paris, C. (2015b). Text and data mining techniques in adverse drug reaction detection. ACM Computing Surveys (CSUR), 47(4), 56.

    CrossRef  Google Scholar 

  • Lee, D., Cornet, R., Lau, F., & De Keizer, N. (2013). A survey of SNOMED CT implementations. Journal of Biomedical Informatics, 46(1), 87–96.

    CrossRef  Google Scholar 

  • Lee, D., de Keizer, N., Lau, F., & Cornet, R. (2014). Literature review of SNOMED CT use. Journal of the American Medical Informatics Association, 21(e1), e11–e19.

    CrossRef  Google Scholar 

  • Meystre, S., Friedlin, J., South, B., Shen, S., & Samore, M. (2010). Automatic de-identification of textual documents in the electronic health record: A review of recent research. BMC Medical Research Methodology, 10(1), 70.

    CrossRef  Google Scholar 

  • Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C., & Hurdle, J. F. (2008). Extracting information from textual documents in the electronic health record: A review of recent research. Yearbook of Medical Informatics, 35, 128–144.

    Google Scholar 

  • Névéol, A., Dalianis, H., Savova, G., & Zweigenbaum, P. (2018). Clinical natural language processing in languages other than english: opportunities and challenges. Journal of Biomedical Semantics, 9(12), 1–13.

    Google Scholar 

  • Nguyen, A. N., Lawley, M. J., Hansen, D. P., Bowman, R. V., Clarke, B. E., Duhig, E. E., et al. (2010). Symbolic rule-based classification of lung cancer stages from free-text pathology reports. Journal of the American Medical Informatics Association, 17(4), 440–445.

    CrossRef  Google Scholar 

  • Pratt, A. W., & Pacak, M. G. (1969). Automated processing of medical English. In Proceedings of the 1969 Conference on Computational Linguistics (pp. 1–23). Association for Computational Linguistics.

    Google Scholar 

  • Skeppstedt, M., Kvist, M., Nilsson, G., & Dalianis, H. (2014). Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study. In Journal of Biomedical Informatics, 49, 148–158.

    CrossRef  Google Scholar 

  • Smith, K., Megyesi, B., Velupillai, S., & Kvist, M. (2014). Professional language in Swedish clinical text: Linguistic characterization and comparative studies. Nordic Journal of Linguistics, 37(02), 297–323.

    CrossRef  Google Scholar 

  • Spasić, I., Livsey, J., Keane, J. A., & Nenadić, G. (2014). Text mining of cancer-related information: Review of current status and future directions. International Journal of Medical Informatics, 83(9), 605–623. http://dx.doi.org/10.1016/j.ijmedinf.2014.06.009. Accessed 11 Jan 2018.

    CrossRef  Google Scholar 

  • Velupillai, S., Dalianis, H., Hassel, M., & Nilsson, G. H. (2009). Developing a standard for de-identifying electronic patient records written in Swedish: Precision, recall and F-measure in a manual and computerized annotation trial. International Journal of Medical Informatics, 78(12), e19–e26.

    CrossRef  Google Scholar 

  • Velupillai, S., Skeppstedt, M., Kvist, M., Mowery, D., Chapman, B. E., Dalianis, H., et al. (2014). Cue-based assertion classification for Swedish clinical text–Developing a lexicon for pyConTextSwe. Artificial Intelligence in Medicine, 61(3), 137–144.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. DSV-Stockholm University, Kista, Sweden

    Hercules Dalianis

Authors
  1. Hercules Dalianis
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

This chapter is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

Copyright information

© 2018 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Dalianis, H. (2018). Introduction. In: Clinical Text Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-78503-5_1

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-78503-5_1

  • Published: 15 May 2018

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78502-8

  • Online ISBN: 978-3-319-78503-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.