Skip to main content

Coviability, Through the Lens of the Mathematical Theory of Viability

  • Chapter
  • First Online:

Abstract

Viability and coviability are polysemous terms for which nobody can claim ownership. The (mathematical) co-evolution is defined here as “the joint evolution of a state and a given environment”. The first is described as a vector of a vector space, the second as a subset of this space, termed “environment”. Coviability means that whenever both state and environment evolve, the vector’s state always remains in the environment. The (mathematical) theory of viability studies both these evolutions on temporal windows, and proves whether or not evolutionary ‘engines’ provide coviable evolutions of both states and environments.

Mathematics is a logical process used to demonstrate that a set of hypotheses implies a set of conclusions. A theorem explains ‘how’ a conclusion answers the ‘why’ described by these hypotheses. At this stage, demonstrating a theorem is an intellectual activity and not a scientific one. It only becomes so when a mathematical metaphor of an assertion in a different field of knowledge is “validated”. This requires validation processes specific to these fields; physics requires experiments, other domains resort to historical validations or more laborious exercises of reflection.

This article describes concepts ‘motivated’ by different fields of life sciences and the ‘theorems’ that relate them. The article is concerned with “mathematical metaphors”, rather than their confirmation which is sometimes hard to justify. The mathematical results are mainly qualitative and different from those obtained with more usual tools motivated by inert matter’s sciences.

Since scientific concepts only make full sense within the confines of their origins, the history of this concept, motivated by environmental sciences since the 1970s, is broadly outlined,

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Centre for Research in Mathematical Decision (CEREMADE) is a mixed research unit (UMR No. 7534, CNRS and Université Paris-Dauphine) was devoted at the time to studying the application of mathematics in scientific disciplines as diverse as economics, management, finance, cognitive science, epidemiology, biology in the framework of evolutionary and control systems, as well as data analysis and the theory of classification, image and signal processing, etc. The main purpose was the mathematical formulation of these problems, their mathematical analysis, the design of numerical computation algorithms and their practical implementation in the context of interactions with business and industry.

  2. 2.

    Tychastic uncertainty, or tyche means ‘chance’ in Greek personified by the goddess Tychy whose goal was to disrupt the course of events, in a good or bad way. This denomination which describes fortuitous events was suggested by Charles Peirce in 1893 in his article “Evolutionary love”.

  3. 3.

    In attendance were: Peter Allen, Martine Antona, Jean-Pierre Aubin, Christophe Béné, François Bousquet, Jean Cartelier, Christian Chaboud, Philippe Cury, Serge Diebolt, Luc Doyen, Marie-Hélène Durand, Daniel Gabay, Ghislain Géniaux, Michel Griffon, Francis Laloé, Jean Lefur, Stéphane Luchini, Lydia Mellul, Jean-François Noel, Hélène Clément-Pitiot, Patrick Saint-Pierre, Juliette Rouchier, Jacques Weber, Gérard Weisbuch.

References

  • Alvarez I, Martin S, Dordan O, Litrico X, Saint-Pierre P (2013) Indicateurs de sécurité et de restauration dynamiques. In: Ancey V, Avelange I, Dedieu B (eds) Agir en situation d’incertitude en agriculture, regards pluridisciplinaires au Nord et au Sud. Peter Lang, Bruxelles, pp 309–326

    Google Scholar 

  • Aubin J-P (1985) Motivated mathematics. SIAM News 18:1, 2 & 3

    Google Scholar 

  • Aubin J-P (1991) Viability theory. Birkhäuser, Boston/Berlin

    Google Scholar 

  • Aubin J-P (2000) Mutational and morphological analysis: tools for shape regulation and morphogenesis. Birkhäuser, Boston

    Google Scholar 

  • Aubin J-P (2010) La mort du devin, l’émergence du démiurge. Essai sur la contingence, la viabilité et l’inertie des systèmes. Éditions Beauchesne, Paris

    Google Scholar 

  • Aubin J-P, Bayen A, Saint-Pierre P (2011) Viability theory: new directions. Springer, Heidelberg/New York

    Book  Google Scholar 

  • Aubin J-P (2013a) Conjurer l’angoisse d’un futur inconnu. In: Bouamrane M, Antona M, Barbault R, Cormier M-C (eds) Rendre possible, Jacques Weber, itinéraire d’un économiste passe-frontières. Éditions Quae, Versailles, pp 157–166

    Google Scholar 

  • Aubin J-P (2013b) Time and money, how long and how much money is needed to regulate a viable economy. Lecture Notes in Economics and Mathematical Systems, 670, Springer

    Google Scholar 

  • Aubin J-P, Catté F (2002) Bilateral fixed-point and algebraic properties of viability kernels and capture basins of sets. Set Valued Anal 10:379–416

    Article  Google Scholar 

  • Aubin J-P, Dordan O (2016) A survey on Galois stratifications and measures of viability risk. J Convex Anal 23:181–225

    Google Scholar 

  • Aubin J-P, Frankowska H (1990) Set-valued analysis. Birkhäuser, Boston

    Google Scholar 

  • Aubin J-P (to appear) La valeur n’existe pas. À moins que [...]. Essai sur le temps, l’argent et le hasard

    Google Scholar 

  • Aubin J-P, Lesne A (2006) Analyse morphologique et mutationnelle: des outils pour la morphogenèse. In Bourgine P, Lesne A (eds) Morphogenèse. Belin, pp 162–177

    Google Scholar 

  • Aubin J-P, Bayen A, Saint-Pierre P (2011) Viability theory, new directions. Springer, Heidelberg and New York, Springer-Verlag

    Book  Google Scholar 

  • Barbault R, Weber J (2010) La Vie, quelle entreprise! Pour une révolution écologique de l’économie. Edition Le Seuil, Paris

    Google Scholar 

  • Béné C, Doyen L, Gabay D (2001) A viability analysis for a bio-economic model. Ecol Econ 36:385–396

    Article  Google Scholar 

  • Bernard C, Martin S (2013) Comparing the sustainability of different action policy possibilities: application to the issue of both household survival and forest preservation in the corridor of Fianarantsoa. Math Biosci 245(2):322–330

    Article  CAS  Google Scholar 

  • Brahic E, Terreaux J-P (2009) Évaluation économique de la biodiversité. Edition Quae, Paris

    Book  Google Scholar 

  • Cury P, Mullon C, Garcia S, Shannon L (2005) Viability theory for an ecosystem approach to fisheries. ICES J Mar Sci 62(3):577–584

    Article  Google Scholar 

  • d’Holbach (1770) Système de la nature ou des lois du monde physique et du monde moral, Corpus des œuvres de philosophie. Fayard (réédition 1990), Paris

    Google Scholar 

  • De Lara M, Doyen L (2008) Sustainable management of natural resources, mathematical models and methods, Environmental science and engineering. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • De Lara M, Martinet V (2009) Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management. Math Biosci 218(2):118–124

    Article  Google Scholar 

  • Domenech PA, Saint-Pierre P, Zaccour Z (2011) Forest conservation and CO2 emissions: A viable approach. Environ Model Assess 16:519–539

    Article  Google Scholar 

  • Dordan O (1995) Analyse qualitative. Masson, Milan

    Google Scholar 

  • Doyen L, De Lara M, Ferraris J, Pelletier D (2007) Sustainability of exploited marine ecosystems through protected areas: a viability model and a coral reef case study. Ecol Model 208:353–366

    Article  Google Scholar 

  • Doyen L, Cissé A, Gourguet S, Mouysset L, Hardy P-Y, Béné C, Blanchard F, Jiguet F, Pereau J-C, Thébaud O (2013) Ecological-economic modelling for the sustainable management of biodiversité. Comput Manag Sci 10:353–364

    Article  Google Scholar 

  • Durand M-H, Desilles A, Fronville A (2013) Incertitude contingente, adversité tychastique. In: Ancey V, Avelange I, Dedieu B (eds) Agir en situation d’incertitude en agriculture, regards pluridisciplinaires au Nord et au Sud. Peter Lang, Bruxelles, pp 297–308

    Google Scholar 

  • Durand M-H, Desilles A, Saint-Pierre P, Angeon V, Ozier-Lafontaine H (2017) A viability approach for agro-ecological transition, the example of soil preservation in French West Indies. Nat Resour Model 30(3):e12134

    Article  Google Scholar 

  • Gourguet S, Thébaud O, Jennings S, Little LR, Dichmont CM, Pascoe S, Deng RA, Doyen L (2015) The cost of co-viability in the Australian Northern Prawn Fishery. Environ Model Assess 21:1–19

    Google Scholar 

  • Griffon M, Griffon L (2010) L’homme viable. Edition Odile Jacob, Paris

    Google Scholar 

  • Griffon M, Griffon L (2011) Pour un monde viable: Changement global et viabilité planétaire. Edition Odile Jacob, Paris

    Google Scholar 

  • Hardy P-Y, Béné C, Doyen L, Schwarz A-M (2013) Food security versus environment conservation: a case study of Solomon Islands’ small-scale fisheries. Environ Develop 8:38–56

    Article  Google Scholar 

  • Hayek F (1978) Coping with ignorance, the Ludwig von Mises memorial lecture, Imprimis 7. Hillsdale College, Hillsdale

    Google Scholar 

  • Hayek FA (1993) La présomption fatale. Presses Universitaires de France

    Google Scholar 

  • Le Moigne J-L (1983) La Théorie du Système Général, Théorie de la Modélisation. PUF, Paris

    Google Scholar 

  • Longo G, Montévil M (2013) Biological time, symmetries and singularities. Springer, Berlin

    Google Scholar 

  • Lorenz T (2010) Mutational analysis, a joint framework for Cauchy problems in and beyond vector spaces, Lecture notes in mathematics, vol 1996. Springer, Berlin

    Google Scholar 

  • Martinet V, Thebaud O, Doyen L (2007) Defining viable recovery paths toward sustainable fisheries. Ecol Econ 64:411–422

    Article  Google Scholar 

  • Monod J (1971) Le hasard et la nécessité. Édition du Seuil, Paris

    Google Scholar 

  • Mouysset L, Doyen L, Jiguet F (2014) From population viability analysis to co-viability of farmland biodiversity and agriculture. Conserv Biol 28:187–201

    Article  CAS  Google Scholar 

  • Mullon C (2013) Network economics of marine ecosystems and their exploitation. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mullon C, Cury P, Shannon L (2004) A viability model of trophic interactions in marine ecosystems. Nat Resour Model 17(1):71–102

    Article  Google Scholar 

  • Pavé A (2007) La nécessité du hasard: Vers une théorie synthétique de la biodiversité. EDP Sciences, Les Ulis

    Google Scholar 

  • Peirce C-S (1893) Evolutionary love, The Monist, 3, 176–200. Repris dans Hartshorne and Weiss (eds) (1958) Collected papers of Charles Sanders Peirce, 6. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Pereau JC, Doyen L, Little R, Thebaud O (2012) The triple bottom line: meeting ecological, economic and social goals with individual transferable quotas. J Environ Econ Manag 63(3):419–434

    Article  Google Scholar 

  • Rapaport A, Terreaux J-P, Doyen L (2006) Sustainable management of renewable resource: a viability approach. Math Comput Model 43:466–483

    Article  Google Scholar 

  • Regnier E, De Lara M (2015) Robust viable analysis of a harvested ecosystem model. Environ Model Assess 20(6):687–698

    Article  Google Scholar 

  • Rojey P (2013) Entre utopie et principe de réalité. L’Harmattan, Paris

    Google Scholar 

  • Sabatier R, Doyen L, Tichit M (2010) Modelling trade-offs between livestock grazing and water conservation in a grassland agroecosystem. Ecol Model 221:1292–1300

    Article  Google Scholar 

  • Sabatier R, Oates LG, Jackson RD (2015) Management flexibility of a grassland agroecosystem: a modeling approach based on viability theory. Agric Syst 139:76–81

    Article  Google Scholar 

  • Sueur C (2012) Viability of decision-making systems in human and animal groups. J Theor Biol 306:93–103

    Article  Google Scholar 

  • Taleb N (2008) Le Cygne noir: la puissance de l’imprévisible. Belles Lettres, Paris

    Google Scholar 

  • Terreaux J-P (2018) N′oublions pas le futur. Valeurs, justice et taux d′actualisation. Ethics and Econ 15(1):66–80

    Google Scholar 

  • Tichit M, Doyen L, Lemel JY, Renault O (2007) A co-viability model of grazing and bird community management in farmland. Ecol Model 206(3–4):277–293

    Article  Google Scholar 

  • Von Bertalanffy L (1968) Théorie générale des systèmes. Dunod, Paris, 2012

    Google Scholar 

  • Wei W, Alvarez I, Martin S (2013) Sustainability analysis: viability concepts to consider transient and asymptotical dynamics. Ecol Model 251:103–113

    Article  Google Scholar 

  • Weigel E (Erhardi VVeigelii) (1669) Idea matheseos universæ cum speciminibus inventionum mathematicarum

    Google Scholar 

Download references

Acknowledgements

The authors dedicate this work in memory of Jacques Weber (1946–2014), a faithful and enthusiastic participant of the seminar “viable development” and a witness of the historical development of coviability as a concept. He was a great source of inspiration and support.

This chapter was written during the course of the program ANR GAIA-TROP on the governance and viability of tropical agro-systems. Valérie Angeon, Samuel Bates, Anya Désilles, Jean-Louis Diman, Audrey Fanchone, Harry Ozier-Lafontaine, Sophie Martin and Patrick Saint-Pierre, are also among those involved in this reflexion on coviability.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aubin, JP., Durand, MH. (2019). Coviability, Through the Lens of the Mathematical Theory of Viability. In: Barrière, O., et al. Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change. Springer, Cham. https://doi.org/10.1007/978-3-319-78497-7_3

Download citation

Publish with us

Policies and ethics