Skip to main content

Fault-Tolerant Multistage Interconnection Networks

  • Chapter
  • First Online:
Crossbar-Based Interconnection Networks

Part of the book series: Computer Communications and Networks ((CCN))

  • 433 Accesses

Abstract

Designing of network topologies, that the blocking problem is reduced to a satisfactory level in them, can be achieved due to improving the fault tolerance of multistage interconnection networks. So researchers are interested in the use of efficient methods to improve the fault tolerance in these networks. Therefore, some significant approaches to improve fault tolerance on multistage interconnection networks will be investigated in this chapter. Increasing the number of stages, using several improved MINs in parallel, and using replicated networks are included in this kind of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake JT, Trivedi KS (1989) Multistage interconnection network reliability. IEEE Trans Comput 38(11):1600–1604

    Article  Google Scholar 

  2. Fan CC, Bruck J (2000) Tolerating multiple faults in multistage interconnection networks with minimal extra stages. IEEE Trans Comput 49(9):998–1004

    Article  Google Scholar 

  3. Adams GB, Siegel HJ (1982) The extra stage cube: a fault-tolerant interconnection network for supersystems. IEEE Trans Comput 100(5):443–454

    Article  Google Scholar 

  4. Koren I, Krishna CM (2007) Fault-tolerant systems. Morgan Kaufmann, USA

    MATH  Google Scholar 

  5. Veglis A, Pomportsis A (2001) Dependability evaluation of interconnection networks. Comput Electr Eng 27(3):239–263

    Article  Google Scholar 

  6. Blake JT, Trivedi KS (1989) Reliability analysis of interconnection networks using hierarchical composition. IEEE Trans Reliab 38(1):111–120

    Article  Google Scholar 

  7. Gunawan I (2008) Reliability analysis of shuffle-exchange network systems. Reliab Eng Syst Safety 93(2):271–276

    Article  Google Scholar 

  8. Newman P (1989) Fast packet switching for integrated services. University of Cambridge, Computer Laboratory

    Google Scholar 

  9. Bansal PK, Joshi RC, Singh K (1994) On a fault-tolerant multistage interconnection network. Comput Electr Eng 20(4):335–345

    Article  Google Scholar 

  10. Bistouni F, Jahanshahi M (2014) Improved extra group network: a new fault-tolerant multistage interconnection network. J Supercomputing 69(1):161–199

    Article  Google Scholar 

  11. Cheema KK, Aggarwal R (2009) Design scheme and performance evaluation of a new fault-tolerant multistage interconnection network. Int J Comput Sci Netw Secur 9(9):270–276

    Google Scholar 

  12. Wu CL, Feng TY (1980) On a class of multistage interconnection networks. IEEE Trans Comput 100(8):694–702

    MathSciNet  MATH  Google Scholar 

  13. Patel JH (1981) Performance of processor-memory interconnections for multiprocessors. IEEE Trans Comput 100(10):771–780

    Article  Google Scholar 

  14. Siegel HJ, Smith SD (1978) Study of multistage SIMD interconnection networks. In: Proceedings of the 5th annual symposium on computer architecture. ACM

    Google Scholar 

  15. Kumar VP, Reddy SM (1985) Design and analysis of fault-tolerant multistage interconnection networks with low link complexity. In: ACM SIGARCH computer architecture news, vol. 13, No 3. IEEE Computer Society Press

    Article  Google Scholar 

  16. Kumar VP, Reddy SM (1987) Augmented shuffle-exchange multistage interconnection networks. Computer 20(6):30–40

    Article  Google Scholar 

  17. Wei S, Lee G (1988) Extra group network: a cost-effective fault-tolerant multistage interconnection network. In: ACM SIGARCH computer architecture news, vol 16, No 2. IEEE Computer Society Press

    Article  Google Scholar 

  18. Bistouni F, Jahanshahi M (2014) Analyzing the reliability of shuffle-exchange networks using reliability block diagrams. Reliab Eng Syst Saf 132:97–106

    Article  Google Scholar 

  19. Bansal PK, Singh K, Joshi RC (1993) Reliability and performance analysis of a modular multistage interconnection network. Microelectron Reliab 33(4):529–534

    Article  Google Scholar 

  20. Aggarwal R, Kaur L (2008) On reliability analysis of fault-tolerant multistage interconnection networks. Int J Comput Sci Secur (IJCSS) 2(4):01–08

    Google Scholar 

  21. Gunawan I (2008) Redundant paths and reliability bounds in gamma networks. Appl Math Model 32(4):588–594

    Article  Google Scholar 

  22. Fard NS, Gunawan I (2002) Reliability bounds for large multistage interconnection networks. In: Applied parallel computing. Springer, Berlin Heidelberg

    Google Scholar 

  23. Bhardwaj VP, Nitin N (2013) Message broadcasting via a new fault tolerant irregular advance omega network in faulty and nonfaulty network environments. J Electr Comput Eng 6

    Google Scholar 

  24. Sadawarti H, Bansal PK (2007) Fault tolerant irregular augmented shuffle network. In: Proceedings of the 2007 annual conference on international conference on computer engineering and applications. World Scientific and Engineering Academy and Society (WSEAS)

    Google Scholar 

  25. Das N, Mukhopadhyaya K, Dattagupta J (2000) O(n) routing in rearrangeable networks. J Syst Architect 46:529–542

    Article  Google Scholar 

  26. Sheu TL, Lin W, Das CR (1995) Distributed fault diagnosis in multistage network-based multiprocessors. IEEE Trans Comput 44(9):1085–1095

    Article  Google Scholar 

  27. Leung YW (1993) On-line fault identification in multistage interconnection networks. Parallel Comput 19(6):693–702

    Article  Google Scholar 

  28. Chaki N, Bhattacharya S (2000) High level net models: a tool for permutation mapping and fault detection in multistage interconnection network. In: TENCON 2000. Proceedings, vol 2. IEEE

    Google Scholar 

  29. Choi M, Park N, Lombardi F (2003) Modeling and analysis of fault tolerant multistage interconnection networks. IEEE Trans Instrum Meas 52(5):1509–1519

    Article  Google Scholar 

  30. Liu J et al (2014) Online traffic-aware fault detection for networks-on-chip. J Parallel Distrib Comput 74(1):1984–1993

    Article  Google Scholar 

  31. Chakrabarty A, Collier M (2014) Routing algorithm for (2logN − 1)-stage switching networks and beyond. J Parallel Distrib Comput 74(10): 3045–3055

    Google Scholar 

  32. Kang WH, Kliese A (2014) A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components. Reliab Eng Syst Saf 124:81–91

    Article  Google Scholar 

  33. Kim Y, Kang WH (2013) Network reliability analysis of complex systems using a non-simulation-based method. Reliab Eng Syst Saf 110:80–88

    Article  Google Scholar 

  34. Shuang Q, Zhang M, Yuan Y (2014) Node vulnerability of water distribution networks under cascading failures. Reliab Eng Syst Saf 124:132–141

    Article  Google Scholar 

  35. Padmavathy N, Chaturvedi SK (2013) Evaluation of mobile ad hoc network reliability using propagation-based link reliability model. Reliab Eng Syst Saf 115:1–9

    Article  Google Scholar 

  36. Jahanshahi M, Dehghan M, Meybodi MR (2013) LAMR: learning automata based multicast routing protocol for multi-channel multi-radio wireless mesh networks. Appl Intell 38(1):58–77

    Article  Google Scholar 

  37. Jahanshahi M, Dehghan M, Meybodi MR (2013) On channel assignment and multicast routing in multi-channel multi-radio wireless mesh networks. Int J Ad Hoc Ubiquitous Comput 12(4):225–244

    Article  Google Scholar 

  38. Jahanshahi M, Dehghan M, Meybodi MR (2011) A mathematical formulation for joint channel assignment and multicast routing in multi-channel multi-radio wireless mesh networks. J Netw Comput Appl 34(6):1869–1882

    Article  Google Scholar 

  39. Jahanshahi M, Barmi AT (2014) Multicast routing protocols in wireless mesh networks: a survey. Computing 1–29

    Google Scholar 

  40. Jahanshahi M, Maddah M, Najafizadegan N (2013) Energy aware distributed partitioning detection and connectivity restoration algorithm in wireless sensor networks. Int J Math Model Comput 3(1):71–82

    Google Scholar 

  41. Jahanshahi M, Rahmani S, Ghaderi S (2013) An efficient cluster head selection algorithm for wireless sensor networks using fuzzy inference systems. Int J Smart Electr Eng (IJSEE) 2(2):121–125

    Google Scholar 

  42. Ebrahimi N, McCullough K, Xiao Z (2013) Reliability of sensors based on nanowire networks operating in a dynamic environment. IEEE Trans Reliab 62(4):908–916

    Article  Google Scholar 

  43. Schneider K et al (2013) Social network analysis via multi-state reliability and conditional influence models. Reliab Eng Syst Saf 109:99–109

    Article  Google Scholar 

  44. Lin YK, Chang PC (2013) A novel reliability evaluation technique for stochastic-flow manufacturing networks with multiple production lines. IEEE Trans Reliab 62(1):92–104

    Article  Google Scholar 

  45. Birolini A (2014) Reliability engineering: theory and practice. Springer, Berlin Heidelberg

    Book  Google Scholar 

  46. Mettas A, Savva M (2001) System reliability analysis: the advantages of using analytical methods to analyze non-repairable systems. In: Reliability and maintainability symposium, 2001. Proceedings annual. IEEE

    Google Scholar 

  47. Aljundi AC et al (2006) A universal performance factor for multi-criteria evaluation of multistage interconnection networks. Future Gener Comput Syst 22(7):794–804

    Article  Google Scholar 

  48. Cuda D, Giaccone P, Montalto M (2012) Design and control of next generation distribution frames. Comput Netw 56(13):3110–3122

    Article  Google Scholar 

  49. Tutsch D, Hommel G (2008) MLMIN: a multicore processor and parallel computer network topology for multicast. Comput Oper Res 35(12):3807–3821

    Article  Google Scholar 

  50. Yang Y, Wang J (2005) A new design for wide-sense nonblocking multicast switching networks. IEEE Trans Commun 53(3):497–504

    Article  Google Scholar 

  51. Escudero-Sahuquillo J et al (2014) A new proposal to deal with congestion in InfiniBand-based fat-trees. J Parallel Distrib Comput 74(1):1802–1819

    Article  Google Scholar 

  52. Bistouni F, Jahanshahi M (2015) Pars network: a multistage interconnection network with fault-tolerance capability. J Parallel Distrib Comput 75:168–183

    Article  Google Scholar 

  53. Bistouni F, Jahanshahi M (2015) Scalable crossbar network: a non-blocking interconnection network for large-scale systems. J Supercomputing 71(2):697–728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahanshahi, M., Bistouni, F. (2018). Fault-Tolerant Multistage Interconnection Networks. In: Crossbar-Based Interconnection Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-78473-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78473-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78472-4

  • Online ISBN: 978-3-319-78473-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics