Blocking Problem

  • Mohsen Jahanshahi
  • Fathollah Bistouni
Part of the Computer Communications and Networks book series (CCN)


This chapter focuses on the blocking problem. Different existing solutions to cope with this problem as well as their scalability will be analyzed. According to previous works, two main solutions are as follows: (1) Using small-size crossbar networks to build scalable interconnection networks with different topology compared to crossbar. Using this approach, many topologies have been introduced. Most of which are known as multistage interconnection networks. (2) Using small-size crossbar networks to build scalable crossbar networks. From this perspective, like to crossbar network, designed networks are non-blocking.


  1. 1.
    Jadhav SS (2009) Advanced computer architecture and computing. Technical PublicationsGoogle Scholar
  2. 2.
    Duato J, Yalamanchili S, Ni LM (2003) Interconnection networks: an engineering approach. Morgan Kaufmann, USAGoogle Scholar
  3. 3.
    Dubois M, Annavaram M, Stenström P (2012) Parallel computer organization and design. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Culler DE, Singh JP, Gupta A (199) Parallel computer architecture: a hardware/software approach. Morgan KaufmannGoogle Scholar
  5. 5.
    Agrawal DP (1983) Graph theoretical analysis and design of multistage interconnection networks. IEEE Trans Comput 100(7):637–648CrossRefGoogle Scholar
  6. 6.
    Dally WJ, Towels BP (2004) Principles and practices of interconnection networks. Morgan Kaufmann, San Francisco, Calif, USAGoogle Scholar
  7. 7.
    Bistouni F, Jahanshahi M (2014) Improved extra group network: a new fault-tolerant multistage interconnection network. J Supercomput 69(1):161–199CrossRefGoogle Scholar
  8. 8.
    Villar JA et al (2013) An integrated solution for QoS provision and congestion management in high-performance interconnection networks using deterministic source-based routing. J Supercomput 66(1):284–304CrossRefGoogle Scholar
  9. 9.
    Hur JY et al (2007) Systematic customization of on-chip crossbar interconnects. Reconfigurable computing: architectures, tools and applications. Springer Berlin Heidelberg, pp 61–72Google Scholar
  10. 10.
    Bistouni F, Jahanshahi M (2015) Pars network: a multistage interconnection network with fault-tolerance capability. J Parallel Distrib Comput 75:168–183CrossRefGoogle Scholar
  11. 11.
    Bistouni F, Jahanshahi M (2014) Analyzing the reliability of shuffle-exchange networks using reliability block diagrams. Reliab Eng Syst Saf 132:97–106CrossRefGoogle Scholar
  12. 12.
    Parker DS, Raghavendra CS (1984) The gamma network. IEEE Trans Comput 100(4):367–373CrossRefGoogle Scholar
  13. 13.
    Rajkumar S, Goyal NK (2014) Design of 4-disjoint gamma interconnection network layouts and reliability analysis of gamma interconnection networks. J Supercomput 69(1):468–491CrossRefGoogle Scholar
  14. 14.
    Chen CW, Chung CP (2005) Designing a disjoint paths interconnection network with fault tolerance and collision solving. J Supercomput 34(1):63–80MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nitin SG, Srivastava N (2011) Designing a fault-tolerant fully-chained combining switches multi-stage interconnection network with disjoint paths. J Supercomput 55(3):400–431CrossRefGoogle Scholar
  16. 16.
    Wei S, Lee G (1988) Extra group network: a cost-effective fault-tolerant multistage interconnection network. ACM SIGARCH Comput Archit News 16(2) IEEE Computer Society PressCrossRefGoogle Scholar
  17. 17.
    Matos D et al (2013) Hierarchical and multiple switching NoC with floorplan based adaptability. Reconfigurable computing: architectures, tools and applications. Springer, Berlin, Heidelberg, pp 179–184Google Scholar
  18. 18.
    Kumar VP, Reddy SM (1987) Augmented shuffle-exchange multistage interconnection networks. Computer 20(6):30–40CrossRefGoogle Scholar
  19. 19.
    Vasiliadis DC, Rizos GE, Vassilakis C (2013) Modelling and performance study of finite-buffered blocking multistage interconnection networks supporting natively 2-class priority routing traffic. J Netw Comput Appl 36(2):723–737CrossRefGoogle Scholar
  20. 20.
    Gunawan I (2008) Reliability analysis of shuffle-exchange network systems. Reliab Eng Syst Saf 93(2):271–276CrossRefGoogle Scholar
  21. 21.
    Blake JT, Trivedi KS (1989) Reliability analysis of interconnection networks using hierarchical composition. IEEE Trans Reliab 38(1):111–120CrossRefGoogle Scholar
  22. 22.
    Bansal PK, Joshi RC, Singh K (1994) On a fault-tolerant multistage interconnection network. Comput Electr Eng 20(4):335–345CrossRefGoogle Scholar
  23. 23.
    Blake JT, Trivedi KS (1989) Multistage interconnection network reliability. IEEE Trans Comput 38(11):1600–1604CrossRefGoogle Scholar
  24. 24.
    Nitin, Subramanian A (2008) Efficient algorithms and methods to solve dynamic MINs stability problem using stable matching with complete ties. J Discrete Algorithms 6(3):353–380MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fan CC, Bruck J (2000) Tolerating multiple faults in multistage interconnection networks with minimal extra stages. IEEE Trans Comput 49(9):998–1004CrossRefGoogle Scholar
  26. 26.
    Adams GB, Siegel HJ (1982) The extra stage cube: a fault-tolerant interconnection network for supersystems. IEEE Transac Comput 100(5):443–454CrossRefGoogle Scholar
  27. 27.
    Tutsch D, Hommel G (2008) MLMIN: a multicore processor and parallel computer network topology for multicast. Comput Oper Res 35(12):3807–3821CrossRefGoogle Scholar
  28. 28.
    Çam H (2001) Analysis of shuffle-exchange networks under permutation trafic. Switching networks: recent advances. Springer, USA, pp 215–256Google Scholar
  29. 29.
    Çam H (2003) Rearrangeability of (2n − 1)-stage shuffle-exchange networks. SIAM J Comput 32(3):557–585MathSciNetCrossRefGoogle Scholar
  30. 30.
    Dai H, Shen X (2008) Rearrangeability of 7-stage 16 × 16 shuffle exchange networks. Front Electr Electron Eng China 3(4):440–458CrossRefGoogle Scholar
  31. 31.
    Beneš VE (1965) Mathematical theory of connecting networks and telephone traffic, vol 17. Academic PressGoogle Scholar
  32. 32.
    Clos C (1953) A study of non-blocking switching networks. Bell Syst Tech J 32(2):406–424CrossRefGoogle Scholar
  33. 33.
    Kolias C, Tomkos I (2005) Switch fabrics. IEEE Circ Devices Mag 21(5):12–17CrossRefGoogle Scholar
  34. 34.
    Fey D et al (2012) Optical multiplexing techniques for photonic Clos networks in high performance computing architectures. J Supercomput 62(2):620–632CrossRefGoogle Scholar
  35. 35.
    Cuda D, Giaccone P, Montalto M (2012) Design and control of next generation distribution frames. Comput Netw 56(13):3110–3122CrossRefGoogle Scholar
  36. 36.
    Sibai FN (2011) Design and evaluation of low latency interconnection networks for real-time many-core embedded systems. Comput Electr Eng 37(6):958–972CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations