Skip to main content

Low-Weight Superimposed Codes and Their Applications

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Abstract

A (kn)-superimposed code is a well known and widely used combinatorial structure that can be represented by a \(t\times n\) binary matrix such that for any k columns of the matrix and for any column \(\mathbf{c}\) chosen among these k columns, there exists a row in correspondence of which column \(\mathbf{c}\) has an entry equal to 1 and the remaining \(k-1\) columns have entries equal to 0. Due to the many situations in which superimposed codes find applications, there is an abundant literature that studies the problem of constructing (kn)-superimposed codes with a small number t of rows. Motivated by applications to conflict-free communication in multiple-access networks, group testing, and data security, we study the problem of constructing superimposed codes that have the additional constraints that the number of 1’s in each column of the matrix is constant, and equal to an input parameter w. Our results improve on the known literature in the area. We also extend our findings to other important combinatorial structures, like selectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From now on, the number of 1’s in a binary vector will be denoted as the weight of that vector.

References

  1. Alon, N., Asodi, V.: Learning a hidden subgraph. SIAM J. Discr. Math. 18(4), 697–712 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balding, D.J., Bruno, W.J., Torney, D.C., Knill, E.: A comparative survey of non-adaptive pooling design. In: Speed, T.P., Waterman, M.S. (eds.) Genetic Mapping and DNA Sequencing. IMA Volumes in Mathematics and its Applications, vol. 81, pp. 133–154. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0751-1_8

    Chapter  Google Scholar 

  3. Bärtschi, A., Grandoni, F.: On conflict-free multi-coloring. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 103–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_9

    Chapter  Google Scholar 

  4. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with log-logstar channel accesses. In: Proceedings of STOC 2016, pp. 499–508 (2016)

    Google Scholar 

  5. van den Berg, E., Candés, E., Chinn, G., Levin, C., Olcott, P.D., Sing-Long, C.: Single-photon sampling architecture for solid-state imaging sensors. Proc. Nat. Acad. Sci. U.S.A. 110(30), E2752–E2761 (2013)

    Article  Google Scholar 

  6. Blundo, C., Galdi, C., Persiano, P.: Randomness recycling in constant-round private computations. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 140–149. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9_10

    Chapter  Google Scholar 

  7. Boyle, D., Kolcun, R., Yeatman, E.: Energy-efficient communication in wireless networks. In: Fagas, G. (ed.) ICT - Energy Concepts for Energy Efficiency and Sustainability. InTech, London (2017). https://doi.org/10.5772/65986

    Google Scholar 

  8. Bshouty, N.H.: Linear time constructions of some \(d\)-restriction problems. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 74–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_5

    Chapter  Google Scholar 

  9. Chang, Y.-J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations in the energy complexity of leader election. In: Proceedings of STOC 2017, pp. 771–783 (2017)

    Google Scholar 

  10. Chang, Y.-J., Dani, V., Hayes, T.P., He, Q., Li, W., Pettie, S.: The energy complexity of broadcast. arXiv:1710.01800 [cs.DC] (2017)

  11. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proceedings of 28th STOC, pp. 30–36 (1996)

    Google Scholar 

  12. Cheng, Y., Du, D.-Z., Lin, G.: On the upper bounds of the minimum number of rows of disjunct matrices. Optim. Lett. 3, 297–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proceedings of SODA 2001, pp. 709–718 (2001)

    Google Scholar 

  14. Chlebus, B.S., Kowalski, D.R.: Almost optimal explicit selectors. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11537311_24

    Chapter  Google Scholar 

  15. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k-mismatch with don’t cares. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 151–162. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_15

    Chapter  Google Scholar 

  16. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sensing. In: Flocchini, P., Gxcasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 280–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780823_22

    Chapter  Google Scholar 

  17. De Bonis, A., Vaccaro, U.: Constructions of generalized superimposed codes with applications to group testing and conflict resolution in multiple access channels. Theoret. Comput. Sci. 306, 223–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Bonis, A., Ga̧sieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, River Edge (2000)

    MATH  Google Scholar 

  20. Du, D.Z., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  21. D’yachkov, A.G.: Lectures on designing screening experiments, arXiv:1401.7505 (2014)

  22. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Probl. Pereda. Inf. 18(3), 7–13 (1982)

    MATH  Google Scholar 

  23. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. of Math. 51, 75–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Emmanuel, J.C., Bassett, M.T., Smith, H.J., Jacobs, J.A.: Pooling of sera for human immunodeficiency virus (HIV) testing: an economical method for use in developing countries. J. Clin. Pathol. 41, 582–585 (1988)

    Article  Google Scholar 

  25. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Finucane, M.M., Rowley, C.F., Paciorek, C.J., Essex, M., Pagano, M.: Estimating the prevalence of transmitted HIV drug resistance using pooled samples. Stat. Methods Med. Res. 25(2), 917–935 (2016)

    Article  MathSciNet  Google Scholar 

  27. Füredi, Z.: On \(r\)-cover-free families. J. Comb. Theory Ser. A 73, 172–173 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gandikota, V., Grigorescu, E., Jaggi, S., Zhou, S.: Nearly optimal sparse group testing. In: 54th Annual Allerton Conference on Communication, Control, and Computing, pp. 401–408 (2016)

    Google Scholar 

  29. Gargano, L., Rescigno, A.A., Vaccaro, U.: On k-strong conflict–free multicoloring. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 276–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_19

    Chapter  Google Scholar 

  30. Gasieniec, L., Kantor, E., Kowalski, D.R., Peleg, D., Su, C.: Time efficient k-shot broadcasting in known topology radio networks. Distrib. Comput. 21, 117–127 (2008)

    Article  MATH  Google Scholar 

  31. Gopi, S., Netrapalli, P., Jain, P., Nori, A.: One-bit compressed sensing: provable support and vector recovery. JMLR 28(3), 154–162 (2013)

    Google Scholar 

  32. Kantor, E., Peleg, D.: Efficient \(k\)-shot broadcasting in radio networks. Discret. Appl. Math. 202, 79–94 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  34. Karmakar, S., Koutris, P., Pagourtzis, A., Sakavalas, D.: Energy-efficient broadcasting in ad hoc wireless networks. J. Discret. Algorithms 42, 2–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6, Satisfiability (2015)

    Google Scholar 

  36. Komlós, J., Greenberg, A.G.: An asymptotically nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. Inf. Theory 31, 303–306 (1985)

    MathSciNet  MATH  Google Scholar 

  37. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_38

    Google Scholar 

  38. Linial, N.: Locality in distributed graph algorithms. SICOMP 21, 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Massey, J.L., Mathys, P.: The collision channel without feedback. IEEE Trans. Inf. Theory 31, 192–204 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), 11 (2010)

    Article  MATH  Google Scholar 

  41. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: Proceedings of 50th FOCS, pp. 315–323 (2009)

    Google Scholar 

  42. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_61

    Chapter  Google Scholar 

  43. Ruszinkó, M.: On the upper bound of the size of the \(r\)-cover-free families. J. Comb. Theory Ser. A 66, 302–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shangguan, C., Ge, G.: New bounds on the number of tests for disjunct matrices. IEEE Trans. Inf. Theory 62, 7518–7521 (2016)

    Article  MathSciNet  Google Scholar 

  45. Sobel, M., Groll, P.A.: Binomial group-testing with an unknown proportion of defectives. Technometrics 8(4), 631–656 (1966)

    Article  MathSciNet  Google Scholar 

  46. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31, 185–191 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zaverucha, G.: Hash families and cover-free families with cryptographic applications. Ph.D. Thesis, Waterloo, Ontario, Canada (2010)

    Google Scholar 

  48. Zenios, S.A., Wein, L.M.: Pooled testing for HIV prevalence estimation: exploiting the dilution effect. Stat. Med. 17(13), 1447–1467 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their careful reading of the paper and their many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Vaccaro .

Editor information

Editors and Affiliations

Appendix A: Proof of Fact 1

Appendix A: Proof of Fact 1

We first state and prove the following technical estimate.

Fact 2

Given integers abc with \(c \le a \le b\), it holds that

$$\begin{aligned} \displaystyle \frac{a}{b} \cdot \frac{a-c}{b-c} \le \left( \frac{a-\frac{c}{2}}{b-\frac{c}{2}} \right) ^2 \end{aligned}$$
(17)

Proof

Since \(c \le a \le b\), we have \(a(a-c) \le b(b-c)\) and then \(a(a-c) c^2 \le b(b-c) c^2\). Adding the quantity \(4ab(a-c)(b-c)\) to both members of the above inequality, we have \(a(a-c) c^2 + 4ab(a-c)(b-c)\le b(b-c) c^2 + 4ab(a-c)(b-c)\), that immediately gives \(a(a-c)(2b-c)^2 \le b(b-c)(2a-c)^2\) proving the fact.    \(\square \)

We can now prove Fact 1, that is,

Given integers abc with \(c \le a \le b\), it holds that:

\({\displaystyle \left( {\begin{array}{c}a\\ c\end{array}}\right) }\times {\displaystyle \left( {\begin{array}{c}b\\ c\end{array}}\right) ^{-1}} \le \left( \displaystyle \frac{a- \frac{c-1}{2}}{b-\frac{c-1}{2}} \right) ^{c}\)

Proof

$$\begin{aligned} {\displaystyle \left( {\begin{array}{c}a\\ c\end{array}}\right) }\times {\displaystyle \left( {\begin{array}{c}b\\ c\end{array}}\right) ^{-1}}= & {} \frac{a!}{(a-c)!} \cdot \frac{(b-c)!}{b!} \nonumber \\= & {} \frac{a}{b} \cdot \frac{a-1}{b-1} \cdot \ldots \cdot \frac{a-(c-2)}{b-(c-2)} \cdot \frac{a-(c-1)}{b-(c-1)}. \end{aligned}$$
(18)

To upper bound expression (18), we consider two cases according to the situation in which c is even or odd.

  • Let c be even. The c factors in the product \( \frac{a}{b} \cdot \frac{a-1}{b-1} \cdot \ldots \cdot \frac{a-(c-2)}{b-(c-2)} \cdot \frac{a-(c-1)}{b-(c-1)}\) can be paired two by two as follows:

    $$\begin{aligned} \frac{a-i}{b-i} \cdot \frac{a-(c-1-i)}{b-(c-1-i)} \qquad \qquad \text{ for } i=0, \ldots , \lceil \frac{c-1}{2} \rceil -1 \end{aligned}$$
    (19)

    Considering that \(\frac{a-(c-1-i)}{b-(c-1-i)} = \frac{a-i-(c-1-2i)}{b-i-(c-1-2i)},\) we can apply Fact 2 to each pair in (19) having

    $$\begin{aligned} \frac{a-i}{b-i} \cdot \frac{a-(c-1-i)}{b-(c-1-i)}= & {} \frac{a-i}{b-i} \cdot \frac{a-i-(c-1-2i)}{b-i-(c-1-2i)} \\\le & {} \left( \frac{a-i-\frac{c-1-2i}{2}}{b-i-\frac{c-1-2i}{2}} \right) ^2 = \left( \frac{a-\frac{c-1}{2}}{b-\frac{c-1}{2}} \right) ^2 \end{aligned}$$

    for \(i=0, \ldots , \lceil \frac{c-1}{2} \rceil -1\) and Fact 1 follows in this case.

  • Let c be odd. The product \( \frac{a}{b} \cdot \frac{a-1}{b-1} \cdot \ldots \cdot \frac{a-(c-2)}{b-(c-2)} \cdot \frac{a-(c-1)}{b-(c-1)}\) has an odd number of factors and, except for the factor \(\displaystyle \frac{a-\frac{c-1}{2}}{b-\frac{c-1}{2}}\) in the middle, the remaining \(c-1\) factors can be paired two by two as in (19). Reasoning as in the c even case, we can prove Fact 1 also in the odd case.    \(\Box \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gargano, L., Rescigno, A.A., Vaccaro, U. (2018). Low-Weight Superimposed Codes and Their Applications. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics