Skip to main content

Networked Hybrid Dynamical Systems: Models, Specifications, and Tools

  • Chapter
  • First Online:
Control Subject to Computational and Communication Constraints

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 475))

Abstract

Models, specifications, and tools for networked hybrid dynamical systems are presented. The proposed modeling framework allows the agent, the network , and the algorithms to have hybrid dynamics. Notions that properly capture key specifications for networked systems, namely, formation, synchronization, safety, and security, are provided. Tools for analysis of the closed-loop hybrid system and for the design of distributed hybrid algorithms are presented. Applications of the methods to estimation, consensus, and synchronization over complex networks are presented throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A solution to \({\mathscr {H}}^a_i\) is called maximal if it cannot be extended, i.e., it is not a (proper) truncated version of another solution. It is called complete if its domain is unbounded. A solution is Zeno if it is complete and its domain is bounded in the t direction. A solution is precompact if it is complete and bounded.

  2. 2.

    In Sect. 16.5.1, we present a model for which the continuous dynamics are active when \(v_{i,1} \geqslant 0\) due to such input being connected to a strictly decreasing timer, in which case, flows with \(v_{i,1}\) identically zero are not possible. In such a case, the set \(C_i^K\) is closed.

  3. 3.

    This attractivity notion enforces that every maximal solution to \({\mathscr {H}}\) is complete, which is a property that is not for free. Sufficient conditions guaranteeing that maximal solutions are complete are given in [23, Propositions 2.10 and 6.10]. An attractivity notion that does not require every maximal solution to be complete is given in [23, Definitions 3.6 and 7.1], which, to emphasize the potential lack of completeness, has the prefix “pre.”

  4. 4.

    The solution might be trivial though, in the sense that its domain might be just one point – otherwise, points that are neither in \(\overline{C}\) nor in D would satisfy the invariance notion vacuously.

  5. 5.

    A pair \((\widetilde{\phi },d)\) defines a solution to \(\widetilde{\mathscr {H}}\) if it satisfies its dynamics. Given a hybrid arc d, its sup norm at \((t,j)\in \mathop {\mathrm{dom}}\nolimits d\) is 

    $$ \begin{aligned} \Vert d\Vert _{(t,j)}&:= \max \left\{ ess\,sup_{(s,k)\in \mathop {\mathrm{dom}}\nolimits d\setminus \varGamma (d),s+k\leqslant t+j} | d(s,k)|, \sup _{(s,k)\in \varGamma (d),s+k\leqslant t+j} | d(s,k)| \right\} \end{aligned} $$

    where \(\varGamma (d)\) denotes the set of all \((t,j) \in \mathop {\mathrm{dom}}\nolimits d\) such that \((t,j + 1)\in \mathop {\mathrm{dom}}\nolimits d\).

  6. 6.

    Given matrices A and B, \(\mathrm{He}(A,B) = A^\top B+B^\top A\), \(A \otimes B\) defines the Kronecker product, and \(A * B\) the Khatri–Rao product. The matrix \(I_n\) is the \(n \times n\) identity matrix.

  7. 7.

    A digraph is undirected if and only if the Laplacian is symmetric. The construction of \({\widetilde{\varPsi }}\) is inspired by [35].

References

  1. Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst. Control Lett. 62(7), 539–549 (2013)

    Article  MathSciNet  Google Scholar 

  2. Altın, B., Sanfelice, R.G.: On Robustness of Pre-Asymptotic Stability to Delayed Jumps in Hybrid Systems. In: Proceedings of the American Control Conference, (2018)

    Google Scholar 

  3. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47(3), 410–421 (2002)

    Article  MathSciNet  Google Scholar 

  4. Banos, A., Barreiro, A.: Delay-independent stability of reset systems. IEEE Trans. Autom. Control 54(2), 341–346 (2009)

    Article  MathSciNet  Google Scholar 

  5. Barreiro, A., Baos, A.: Delay-dependent stability of reset systems. Automatica 46(1), 216–221 (2010)

    Article  MathSciNet  Google Scholar 

  6. Belykh, I., Belykh, V., Hasler, M.: Generalized connection graph method for synchronization in asymmetrical networks. Phys. D Nonlinear Phenom. 224(1–2), 42–51 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bohacek, S., Hespanha, J., Lee, J., Obraczka, K.: Modeling communication networks using hybrid systems. IEEE/ACM Trans. Netw. 15(6), 663–672 (2007)

    Google Scholar 

  8. Cai, C., Teel, A.R.: Characterizations of input-to-state stability for hybrid systems. Syst. Control Lett. 58, 47–53 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cai, S., Zhou, P., Liu, Z.: Synchronization analysis of hybrid-coupled delayed dynamical networks with impulsive effects: a unified synchronization criterion. J. Franklin Inst. 352(5), 2065–2089 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cattivelli, F.S., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chai, J., Sanfelice, R.G.: On notions and sufficient conditions for forward invariance of sets for hybrid dynamical systems. In: Proceedings of the 54th IEEE Conference on Decision and Control, pp. 2869–2874 (2015)

    Google Scholar 

  12. Chai, J., Sanfelice, R.G.: Results on feedback design for forward invariance of sets in hybrid dynamical systems. In: Proceedings of the 55th IEEE Conference on Decision and Control, pp. 622–627 (2016)

    Google Scholar 

  13. Chai, J., Sanfelice, R.G.: On robust forward invariance of sets for hybrid dynamical systems. In: Proceedings of the American Control Conference, pp. 1199–1204 (2017)

    Google Scholar 

  14. Chen, W.-H., Zheng, W.X.: Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays. Automatica 45(6), 1481–1488 (2009)

    Article  MathSciNet  Google Scholar 

  15. Cortes, J.: Distributed Kriged Kalman filter for spatial estimation. IEEE Trans. Autom. Control 54(12), 2816–2827 (2009)

    Article  MathSciNet  Google Scholar 

  16. Dačić, D., Nešić, D.: Observer design for wired linear networked control systems using matrix inequalities. Automatica 44(11), 2840–2848 (2008)

    Article  MathSciNet  Google Scholar 

  17. De Persis, C., Frasca, P.: Self-triggered coordination with ternary controllers. IFAC Proc. Vol. 45(26), 43–48 (2012)

    Article  Google Scholar 

  18. Dinh, T.N., Andrieu, V., Nadri, M., Serres, U.: Continuous-discrete time observer design for Lipschitz systems with sampled measurements. IEEE Trans. Autom. Control 60(3), 787–792 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dörfler, F., Pasqualetti, F., Bullo, F.: Continuous-time distributed observers with discrete communication. IEEE J. Sel. Top. Signal Process. 7(2), 296–304 (2013)

    Article  Google Scholar 

  20. Farza, M., M’Saad, M., Fall, M.L., Pigeon, E., Gehan, O., Busawon, K.: Continuous-discrete time observers for a class of mimo nonlinear systems. IEEE Trans. Autom. Control 59(4), 1060–1065 (2014)

    Article  MathSciNet  Google Scholar 

  21. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  22. Ferrante, F., Gouaisbaut, F., Sanfelice, R.G., Tarbouriech, S.: State estimation of linear systems in the presence of sporadic measurements. Automatica 73, 101–109 (2016)

    Article  MathSciNet  Google Scholar 

  23. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, New Jersey (2012)

    MATH  Google Scholar 

  24. Hui, Q., Haddad, W.M., Bhat, S.P.: Finite-time semistability theory with applications to consensus protocols in dynamical networks. In: Proceedings of the American Control Conference, pp. 2411–2416 (2007)

    Google Scholar 

  25. Kamal, A.T., Farrell, J.A., Roy-Chowdhury, A.K.: Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Autom. Control 58(12), 3112–3125 (2013)

    Article  MathSciNet  Google Scholar 

  26. Li, Y., Sanfelice, R.G.: Results on finite time stability for a class of hybrid systems. In: Proceedings of the American Control Conference, pp. 4263–4268 (2016)

    Google Scholar 

  27. Li, Y., Sanfelice, R.G.: Interconnected observers for robust decentralized estimation with performance guarantees and optimized connectivity graph. IEEE Trans. Control Netw. Syst. 3(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Phillips, S., Sanfelice, R.G.: On distributed observers for linear time-invariant systems under intermittent information constraints. In: Proceedings of 10th IFAC Symposium on Nonlinear Control Systems, pp. 654–659 (2016)

    Google Scholar 

  29. Li, Y., Phillips, S., Sanfelice, R.G.: Robust distributed estimation for linear systems under intermittent information. To appear in IEEE Trans. Autom. Control (2018)

    Google Scholar 

  30. Liu, J., Teel, A.R.: Lyapunov-based sufficient conditions for stability of hybrid systems with memory. IEEE Trans. Autom. Control 61(4), 1057–1062 (2016)

    Article  MathSciNet  Google Scholar 

  31. Liu, J., Teel, A.R.: Hybrid Dynamical Systems with Finite Memory, pp. 261–273. Springer International Publishing, New York (2016)

    MATH  Google Scholar 

  32. Liu, J., Teel, A.R.: Invariance principles for hybrid systems with memory. Nonlinear Anal. Hybrid Syst. 21, 130–138 (2016)

    Article  MathSciNet  Google Scholar 

  33. Liu, J., Liu, X., Xie, W.-C.: Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica 47(5), 899–908 (2011)

    Article  MathSciNet  Google Scholar 

  34. Liu, K.-Z., Sun, X.-M.: Razumikhin-type theorems for hybrid system with memory. Automatica 71, 72–77 (2016)

    Article  MathSciNet  Google Scholar 

  35. Liu, T., Hill, D.J., Liu, B.: Synchronization of dynamical networks with distributed event-based communication. In: 2012 IEEE 51st IEEE Conference on Decision and Control, pp. 7199–7204 (2012)

    Google Scholar 

  36. Liu, T., Cao, M., De Persis, C., Hendrickx, J.M.: Distributed event-triggered control for synchronization of dynamical networks with estimators. IFAC Proc. Vol. 46(27), 116–121 (2013)

    Article  Google Scholar 

  37. Liu, X., Shen, J.: Stability theory of hybrid dynamical systems with time delay. IEEE Trans. Autom. Control 51(4), 620–625 (2006)

    Article  MathSciNet  Google Scholar 

  38. Lu, J., Ho, D.W.C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)

    Article  MathSciNet  Google Scholar 

  39. Mazenc, F., Andrieu, V., Malisoff, M.: Continuous-Discrete Observers for Time-Varying Nonlinear Systems: A Tutorial on Recent Results, Chapter 25, pp. 181–188 (2015)

    Chapter  Google Scholar 

  40. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)

    Article  MathSciNet  Google Scholar 

  41. Murthy, V.N., Fetz, E.E.: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J. Neurophysiol. 76(6), 3968–3982 (1996)

    Article  Google Scholar 

  42. Naghshtabrizi, P., Hespanha, J.P.: Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 848–853 (2005)

    Google Scholar 

  43. Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pp. 8179–8184 (2005)

    Google Scholar 

  44. Olfati-Saber, R., Murray, R.M.: Graph rigidity and distributed formation stabilization of multi-vehicle systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 2965–2971. IEEE (2002)

    Google Scholar 

  45. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the Conference on Decision and Control and European Control Conference, pp. 6698–6703. IEEE (2005)

    Google Scholar 

  46. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  47. Park, S., Martins, N.C.: Design of distributed LTI observers for state omniscience. IEEE Trans. Autom. Control 62(4), 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  48. Phillips, S., Sanfelice, R.G.: A framework for modeling and analysis of robust stability for spiking neurons. In: Proceedings of the American Control Conference, pp. 1414–1419 (2014)

    Google Scholar 

  49. Phillips, S., Sanfelice, R.G.: Synchronization of two linear systems over intermittent communication networks with robustness. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5569–5574 (2015)

    Google Scholar 

  50. Phillips, S., Sanfelice, R.G.: Robust synchronization of interconnected linear systems over intermittent communication networks. In: Proceedings of the American Control Conference, pp. 5575–5580 (2016)

    Google Scholar 

  51. Phillips, S., Sanfelice, R.G.: On asymptotic synchronization of interconnected hybrid systems with applications. In: Proceedings of the American Control Conference, pp. 2291–2296 (2017)

    Google Scholar 

  52. Phillips, S., Sanfelice, R.G., Erwin, R.S.: On the synchronization of two impulsive oscillators under communication constraints. In: Proceedings of the American Control Conference, pp. 2443–2448 (2012)

    Google Scholar 

  53. Phillips, S., Li, Y., Sanfelice, R.G.: On distributed intermittent consensus for first-order systems with robustness. In: Proceedings of 10th IFAC Symposium on Nonlinear Control Systems, pp. 146–151 (2016)

    Google Scholar 

  54. Phillips, S., Duz, A., Pasqualetti, F., Sanfelice, R.G.: Recurrent attacks in a class of cyber-physical systems: hybrid-control framework for modeling and detection. In: Proceedings of the IEEE Conference on Decision and Control, 1368–1373 (2017)

    Google Scholar 

  55. Postoyan, R., Nešić, D.: A framework for the observer design for networked control systems. IEEE Trans. Autom. Control 57(5), 1309–1314 (2012)

    Article  MathSciNet  Google Scholar 

  56. Sanfelice, R.G.: Robust asymptotic stabilization of hybrid systems using control Lyapunov functions. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 235–244 (2016)

    Google Scholar 

  57. Sarlette, A., Sepulchre, R., Leonard, N.: Cooperative attitude synchronization in satellite swarms: a consensus approach. In: Proceedings of the 17th IFAC Symposium on Automatic Control in Aerospace, pp. 223–228 (2007)

    Article  Google Scholar 

  58. Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45(11), 2557–2562 (2009)

    Article  MathSciNet  Google Scholar 

  59. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007)

    Article  Google Scholar 

  60. Shi, L., Xie, L., Murray, R.M.: Kalman filtering over a packet-delaying network: a probabilistic approach. Automatica 45(9), 2134–2140 (2009)

    Article  MathSciNet  Google Scholar 

  61. Slotine, J.J., Wang, W., El-Rifai, K.: Contraction analysis of synchronization in networks of nonlinearly coupled oscillators. In: Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (2004)

    Google Scholar 

  62. Sun, X.-M., Wang, W.: Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica 48(9), 2359–2364 (2012)

    Article  MathSciNet  Google Scholar 

  63. Sun, Y., Michel, A.N., Zhai, G.: Stability of discontinuous retarded functional differential equations with applications. IEEE Trans. Autom. Control 50(8), 1090–1105 (2005)

    Article  MathSciNet  Google Scholar 

  64. Suri, A., Baillieul, J., Raghunathan, D.V.: Control using feedback over wireless ethernet and bluetooth. Handbook of Networked and Embedded Control Systems, pp. 677–697. Springer, Berlin (2005)

    Chapter  Google Scholar 

  65. Wang, S., Ren, W.: On the consistency and confidence of distributed dynamic state estimation in wireless sensor networks. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, Japan, pp. 3069–3074 (2015)

    Google Scholar 

  66. Yan, P., Özbay, H.: Stability analysis of switched time delay systems. SIAM J. Control Optim. 47(2), 936–949 (2008)

    Article  MathSciNet  Google Scholar 

  67. Yuan, R., Jing, Z., Chen, L.: Uniform asymptotic stability of hybrid dynamical systems with delay. IEEE Trans. Autom. Control 48(2), 344–348 (2003)

    Article  MathSciNet  Google Scholar 

  68. Zhang, W., Yu, L., Feng, G.: Optimal linear estimation for networked systems with communication constraints. Automatica 47(9), 1992–2000 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sanfelice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanfelice, R.G. (2018). Networked Hybrid Dynamical Systems: Models, Specifications, and Tools. In: Tarbouriech, S., Girard, A., Hetel, L. (eds) Control Subject to Computational and Communication Constraints. Lecture Notes in Control and Information Sciences, vol 475. Springer, Cham. https://doi.org/10.1007/978-3-319-78449-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78449-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78448-9

  • Online ISBN: 978-3-319-78449-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics