Skip to main content

Small Primitive Zonotopes

  • Conference paper
  • First Online:
Book cover Discrete Geometry and Symmetry (GSC 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 234))

Included in the following conference series:

  • 626 Accesses

Abstract

We study a family of lattice polytopes, called primitive zonotopes, describe instances with small parameters, and discuss connections to the largest diameter of lattice polytopes and to the computational complexity of multicriteria matroid optimization. Complexity results and open questions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Acketa, J. Žunić, On the maximal number of edges of convex digital polygons included into an \(m\times {m}\)-grid. J. Comb. Theory A 69, 358–368 (1995)

    Article  MathSciNet  Google Scholar 

  2. X. Allamigeon, P. Benchimol, S. Gaubert, M. Joswig, Log-barrier interior point methods are not strongly polynomial. SIAM J. Appl. Algebra Geom. 2, 140–178 (2018)

    Article  MathSciNet  Google Scholar 

  3. A. Balog, I. Bárány, On the convex hull of the integer points in a disc, in Proceedings of the Seventh Annual Symposium on Computational Geometry (1991), pp. 162–165

    Google Scholar 

  4. S. Borgwardt, J. De Loera, E. Finhold. The diameters of transportation polytopes satisfy the Hirsch conjecture. Mathematical Programming, (to appear)

    Google Scholar 

  5. N. Chadder, A. Deza, Computational determination of the largest lattice polytope diameter. Electron. Notes Discrete Math. 62, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  6. C. Colbourn, W. Kocay, D. Stinson, Some NP-complete problems for hypergraph degree sequences. Discrete Appl. Math. 14, 239–254 (1986)

    Article  MathSciNet  Google Scholar 

  7. A. Del Pia, C. Michini, On the diameter of lattice polytopes. Discrete Comput. Geom. 55, 681–687 (2016)

    Article  MathSciNet  Google Scholar 

  8. A. Deza, A. Deza, Z. Guan, L. Pournin, Distance between vertices of lattice polytopes. AdvOL Report 2018/1, McMaster University, 2018

    Google Scholar 

  9. A. Deza, A. Levin, S.M. Meesum, S. Onn, Optimization over degree sequence. arXiv:1706.03951, 2017

  10. A. Deza, G. Manoussakis, S. Onn, Primitive zonotopes. Discrete Comput. Geom. 60, 27–39 (2018)

    Article  MathSciNet  Google Scholar 

  11. A. Deza, L. Pournin, Improved bounds on the diameter of lattice polytopes. Acta Mathematica Hungarica, 154, 457–469 (2018)

    Article  MathSciNet  Google Scholar 

  12. D. Eppstein, Zonohedra and zonotopes. Math. Educ. Res. 5, 15–21 (1996)

    Google Scholar 

  13. P. Erdős, T. Gallai, Graphs with prescribed degrees of vertices (in Hungarian). Matematikai Lopak 11, 264–274 (1960)

    MATH  Google Scholar 

  14. K. Fukuda, Lecture notes: Polyhedral computation. http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/

  15. M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1993)

    Book  Google Scholar 

  16. B. Grünbaum, Convex Polytopes (Springer, Graduate Texts in Mathematics, Berlin, 2003)

    Book  Google Scholar 

  17. J. Humphreys, Reflection Groups and Coxeter Groups (Cambridge University Press, Cambridge Studies in Advanced Mathematics, Cambridge, 1990)

    Book  Google Scholar 

  18. G. Kalai, D. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26, 315–316 (1992)

    Article  MathSciNet  Google Scholar 

  19. P. Kleinschmidt, S. Onn, On the diameter of convex polytopes. Discrete Math. 102, 75–77 (1992)

    Article  MathSciNet  Google Scholar 

  20. C. Klivans, V. Reiner, Shifted set families, degree sequences, and plethysm. Electron. J. Comb. 15 (2008)

    Google Scholar 

  21. R. Liu, Nonconvexity of the set of hypergraph degree sequences. Electron. J. Comb. 20(1) (2013)

    Google Scholar 

  22. M. Melamed, S. Onn, Convex integer optimization by constantly many linear counterparts. Linear Algebra Its Appl. 447, 88–109 (2014)

    Article  MathSciNet  Google Scholar 

  23. N.L.B. Murthy, M.K. Srinivasan, The polytope of degree sequences of hypergraphs. Linear Algebra Its Appl. 350, 147–170 (2002)

    Article  MathSciNet  Google Scholar 

  24. D. Naddef, The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45, 109–110 (1989)

    Google Scholar 

  25. S. Onn, Nonlinear Discrete Optimization. (European Mathematical Society, Zurich Lectures in Advanced Mathematics, 2010)

    Google Scholar 

  26. S. Onn, U.G. Rothblum, Convex combinatorial optimization. Discrete Comput. Geom. 32, 549–566 (2004)

    Article  MathSciNet  Google Scholar 

  27. F. Santos, A counterexample to the Hirsch conjecture. Ann. Math. 176, 383–412 (2012)

    Article  MathSciNet  Google Scholar 

  28. N. Sloane (ed.), The on-line encyclopedia of integer sequences. https://oeis.org

  29. I. Soprunov, J. Soprunova, Eventual quasi-linearity of the Minkowski length. Eur. J. Comb. 58, 110–117 (2016)

    Article  MathSciNet  Google Scholar 

  30. N. Sukegawa, Improving bounds on the diameter of a polyhedron in high dimensions. Discrete Math. 340, 2134–2142 (2017)

    Article  MathSciNet  Google Scholar 

  31. T. Thiele, Extremalprobleme für Punktmengen (Diplomarbeit, Freie Universität Berlin, 1991)

    Google Scholar 

  32. M. Todd, An improved Kalai-Kleitman bound for the diameter of a polyhedron. SIAM J. Discrete Math. 28, 1944–1947 (2014)

    Article  MathSciNet  Google Scholar 

  33. G. Ziegler, Lectures on Polytopes (Springer, Graduate Texts in Mathematics, Berlin, 1995)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees, Johanne Cohen, Nathann Cohen, Komei Fukuda, and Aladin Virmaux for valuable comments and for informing us of reference [31], Emo Welzl and Günter Ziegler for helping us access Thorsten Thiele’s Diplomarbeit, Dmitrii Pasechnik for pointing out reference [29], and Vincent Pilaud for pointing out that \(Z_1(d,2)\) is the permutahedron of type \(B_d\). This work was partially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant program (RGPIN-2015-06163), by the Digiteo Chair C&O program at Université de Paris Sud, and by the Dresner Chair at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Deza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deza, A., Manoussakis, G., Onn, S. (2018). Small Primitive Zonotopes. In: Conder, M., Deza, A., Weiss, A. (eds) Discrete Geometry and Symmetry. GSC 2015. Springer Proceedings in Mathematics & Statistics, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-78434-2_5

Download citation

Publish with us

Policies and ethics