Skip to main content

Pascal’s Triangle of Configurations

  • Conference paper
  • First Online:
Discrete Geometry and Symmetry (GSC 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 234))

Included in the following conference series:

Abstract

We introduce an infinite class of configurations which we call Desargues–Cayley–Danzer configurations. The term is motivated by the fact that they generalize the classical \((10_3)\) Desargues configuration and Danzer’s \((35_4)\) configuration; moreover, their construction goes back to Cayley. We show that these configurations can be arranged in a triangular array which resembles the classical Pascal triangle also in the sense that it can be recursively generated. As an interesting consequence, we show that all these configurations are connected to incidence theorems, like in the classical case of Desargues. We also show that these configurations can be represented not only by points and lines, but points and circles, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that in a geometric configuration the blocks can also be other geometric elements, like planes, hyperplanes, spheres, etc. [5, 7, 8]; we shall not consider such examples here.

  2. 2.

    Not every incidence statement involves merely a single incidence in this sense. For example, the author presented a conjecture in [9] which is connected with a \((100_4)\) configuration; the conjecture essentially states that if 350 (suitable) incidences in this configuration are satisfied, then the remaining 50 are also satisfied. (We note that the same \((100_4)\) configuration also occurs in  [17], in two different versions.).

  3. 3.

    The drawing in Fig. 6 has been prepared by Ákos Varga (University of Szeged) [20].

References

  1. V.E. Adler, Some incidence theorems and integrable discrete equations. Discrete Comput. Geom. 36, 489–498 (2006)

    Article  MathSciNet  Google Scholar 

  2. M. Boben, G. Gévay, T. Pisanski, Danzer’s configuration revisited. Adv. Geom. 15, 393–408 (2015)

    Article  MathSciNet  Google Scholar 

  3. J. Conway, A. Ryba, The Pascal mysticum demystified. Math. Intelligencer 34, 4–8 (2012)

    Article  MathSciNet  Google Scholar 

  4. J. Conway, A. Ryba, Extending the Pascal mysticum. Math. Intelligencer 35, 44–51 (2013)

    Article  MathSciNet  Google Scholar 

  5. H.S.M. Coxeter, Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56 (1950), 413–455. Reprinted in: H.S.M. Coxeter, Twelve Geometric Essays, Southern Illinois University Press, Carbondale, 1968, pp. 106–149

    Google Scholar 

  6. H.S.M. Coxeter, Projective Geometry (University of Toronto Press, Toronto, 1974)

    Book  Google Scholar 

  7. I. Dolgachev, Abstract configurations in algebraic geometry, in Proceedings Fano Conference, Torino, 2002 ed. by A. Collino, A. Conte, M. Marchisio (University of Torino, 2004), pp. 423–462

    Google Scholar 

  8. G. Gévay, Symmetric configurations and the different levels of their symmetry. Symmetry Cult. Sci. 20, 309–329 (2009)

    Google Scholar 

  9. G. Gévay, Constructions for large spatial point-line \((n_k)\) configurations. Ars Math. Contemp. 7, 175–199 (2014)

    MathSciNet  MATH  Google Scholar 

  10. G. Gévay, T. Pisanski, Kronecker covers, \(V\)-construction, unit-distance graphs and isometric point-circle configurations. Ars Math. Contemp. 7, 317–336 (2014)

    MathSciNet  MATH  Google Scholar 

  11. B. Grünbaum, Musings on an example of Danzer’s. European J. Combin. 29, 1910–1918 (2008)

    Article  MathSciNet  Google Scholar 

  12. B. Grünbaum, Configurations of Points and Lines, Graduate Texts in Mathematics, vol. 103 (American Mathematical Society, Providence, Rhode Island, 2009)

    Google Scholar 

  13. B. Grünbaum, J.F. Rigby, The real configuration \((21_4)\). J. London Math. Soc. 41, 336–346 (1990)

    Article  MathSciNet  Google Scholar 

  14. D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Springer, Berlin, 1932 (Szemléletes geometria, Gondolat, Budapest, Hungarian translation, 1982)

    Google Scholar 

  15. L. Klug, Az általános és négy különös Pascal-hatszög configuratiója (The Configuration of the General and Four Special Pascal Hexagons; in Hungarian), Ajtai K. Albert Könyvnyomdája, Kolozsvár, 1898. Reprinted in: L. Klug, Die Configuration Des Pascal’schen Sechseckes Im Allgemeinen Und in Vier Speciellen Fällen (German Edition), Nabu Press, 2010

    Google Scholar 

  16. F. Levi, Geometrische Konfigurationen (Hirzel, Leipzig, 1929)

    Google Scholar 

  17. T. Pisanski, B. Servatius, Configurations from a Graphical Viewpoint, Birkhäuser Advanced Texts Basler Lehrbücher Series (Birkhäuser Boston Inc., Boston, 2013)

    Book  Google Scholar 

  18. D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, Berlin, Heidelberg, 1995)

    Google Scholar 

  19. B. Servatius, H. Servatius, The generalized Reye configuration. Ars Math. Contemp. 3, 21–27 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Á. Varga, personal communication (2015)

    Google Scholar 

  21. O. Veblen, J.W. Young, Projective Geometry, vol. 1 (Ginn and Company, Boston, 1910)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the (anonymous) reviewers for their helpful comments. Special thanks go to Reviewer #1 for the insightful remarks and valuable suggestions that improved the exposition, results and proofs of this paper. This research is supported by the OTKA grant NN-114614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Gévay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gévay, G. (2018). Pascal’s Triangle of Configurations. In: Conder, M., Deza, A., Weiss, A. (eds) Discrete Geometry and Symmetry. GSC 2015. Springer Proceedings in Mathematics & Statistics, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-78434-2_10

Download citation

Publish with us

Policies and ethics