Advertisement

Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus

  • Nicholas Genise
  • Daniele Micciancio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10820)

Abstract

We present improved algorithms for gaussian preimage sampling using the lattice trapdoors of (Micciancio and Peikert, CRYPTO 2012). The MP12 work only offered a highly optimized algorithm for the on-line stage of the computation in the special case when the lattice modulus q is a power of two. For arbitrary modulus q, the MP12 preimage sampling procedure resorted to general lattice algorithms with complexity cubic in the bitsize of the modulus (or quadratic, but with substantial preprocessing and storage overheads). Our new preimage sampling algorithm (for any modulus q) achieves linear complexity with very modest storage requirements, and experimentally outperforms the generic method of MP12 already for small values of q. As an additional contribution, we give a new, quasi-linear time algorithm for the off-line perturbation sampling phase of MP12 in the ring setting. Our algorithm is based on a variant of the Fast Fourier Orthogonalization (FFO) algorithm of (Ducas and Prest, ISSAC 2016), but avoids the need to precompute and store the FFO matrix by a careful rearrangement of the operations. All our algorithms are fairly simple, with small hidden constants, and offer a practical alternative to use the MP12 trapdoor lattices in a broad range of cryptographic applications.

Notes

Acknowledgment

We thank Léo Ducas, Yuriy Polyakov, Kurt Rohloff, and Michael Walter for their helpful discussions as well as the anonymous reviewers for their helpful feedback and suggestions.

References

  1. 1.
    Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_1CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin [59], pp. 98–115Google Scholar
  4. 4.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin et al. [29], pp. 280–297Google Scholar
  5. 5.
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48523-6_1CrossRefGoogle Scholar
  6. 6.
    Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin et al. [29], pp. 334–352Google Scholar
  7. 7.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor. Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_1CrossRefGoogle Scholar
  9. 9.
    El Bansarkhani, R.E., Buchmann, J.A.: Improvement and efficient implementation of a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_3CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval and Johansson [58], pp. 228–245Google Scholar
  11. 11.
    Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: threshold protocols for signatures and (H)IBE. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 218–236. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_14CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_10CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_1CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_23CrossRefGoogle Scholar
  16. 16.
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_8CrossRefGoogle Scholar
  17. 17.
    Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_14Google Scholar
  18. 18.
    Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_14CrossRefGoogle Scholar
  19. 19.
    Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_13CrossRefGoogle Scholar
  20. 20.
    Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: Sudan, M. (ed.) Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp. 147–156. ACM (2016)Google Scholar
  21. 21.
    Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_4CrossRefGoogle Scholar
  22. 22.
    Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_16CrossRefGoogle Scholar
  23. 23.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro and Robshaw [30], pp. 630–656Google Scholar
  25. 25.
    Dai, W., Doröz, Y., Polyakov, Y., Rohloff, K., Sajjadpour, H., Savas, E., Sunar, B.: Implementation and evaluation of a lattice-based key-policy ABE scheme. IACR Cryptology ePrint Archive, 2017:601 (2017)Google Scholar
  26. 26.
    Davidson, A.: Obfuscation of bloom filter queries from ring-LWE. IACR Cryptology ePrint Archive, 2017:448 (2017)Google Scholar
  27. 27.
    Ducas, L., Nguyen, P.Q.: Faster gaussian lattice sampling using lazy floating-point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_26CrossRefGoogle Scholar
  28. 28.
    Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Abramov, S.A., Zima, E.V., Gao, X. (eds.) Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pp. 191–198. ACM (2016)Google Scholar
  29. 29.
    Fischlin, M., Buchmann, J.A., Manulis, M. (eds.): Public Key Cryptography - PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  30. 30.
    Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9216. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  31. 31.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)Google Scholar
  32. 32.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  33. 33.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. J. ACM 62(6), 45:1–45:33 (2015). Prelim. version in STOC 2013MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro and Robshaw [30], pp. 503–523Google Scholar
  35. 35.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings ACM on Symposium on Theory of Computing, STOC 2015, pp. 469–477. ACM (2015)Google Scholar
  36. 36.
    Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_23CrossRefGoogle Scholar
  37. 37.
    Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savaş, E., Sajjadpour, H.: Efficient implementation of gaussian sampling for trapdoor lattices and its applications. Pers. Commun. (2017, in preparation)Google Scholar
  38. 38.
    Gur, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and evaluation of improved gaussian sampling for lattice trapdoors. IACR Cryptology ePrint Archive, 2017:285 (2017)Google Scholar
  39. 39.
    Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-obfuscation using graph-induced encoding. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 783–798 (2017)Google Scholar
  40. 40.
    Howe, J., Pöppelmann, T., O’Neill, M., O’Sullivan, E., Güneysu, T.: Practical lattice-based digital signature schemes. ACM Trans. Embed. Comput. Syst. 14, 41 (2015)CrossRefGoogle Scholar
  41. 41.
    Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math. Softw. 42(1), 3:1–3:14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_17CrossRefGoogle Scholar
  43. 43.
    Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Shmoys, D.B. (ed.) Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 937–941. ACM/SIAM (2000)Google Scholar
  44. 44.
    Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_3CrossRefGoogle Scholar
  45. 45.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_20CrossRefGoogle Scholar
  46. 46.
    Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_8CrossRefGoogle Scholar
  47. 47.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71039-4_4CrossRefGoogle Scholar
  48. 48.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_3CrossRefGoogle Scholar
  50. 50.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval and Johansson [58], pp. 700–718Google Scholar
  52. 52.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_16CrossRefGoogle Scholar
  54. 54.
    Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_18Google Scholar
  55. 55.
    Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin [59], pp. 80–97Google Scholar
  56. 56.
    Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31CrossRefGoogle Scholar
  58. 58.
    Pointcheval, D., Johansson, T. (eds.): Advances in Cryptology - EUROCRYPT 2012, vol. 7237. Springer, Heidelberg (2012). Proceedings of 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 15–19 April 2012zbMATHGoogle Scholar
  59. 59.
    Rabin, T. (ed.): Advances in Cryptology - CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223. Springer, Heidelberg (2010). 30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010, ProceedingszbMATHGoogle Scholar
  60. 60.
    Wee, H.: Public key encryption against related key attacks. In: Fischlin et al. [29], pp. 262–279Google Scholar
  61. 61.
    Zhang, F.: The Schur Complement and Its Applications, vol. 4. Springer Science, Heidelberg (2006)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.University of CaliforniaSan DiegoUSA

Personalised recommendations