Advertisement

Unbounded ABE via Bilinear Entropy Expansion, Revisited

  • Jie Chen
  • Junqing Gong
  • Lucas Kowalczyk
  • Hoeteck Wee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10820)

Abstract

We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemes with constant-size public parameters under static assumptions in bilinear groups. Concretely, we obtain:
  • a simple and adaptively secure unbounded ABE scheme in composite-order groups, improving upon a previous construction of Lewko and Waters (Eurocrypt ’11) which only achieves selective security;

  • an improved adaptively secure unbounded ABE scheme based on the k-linear assumption in prime-order groups with shorter ciphertexts and secret keys than those of Okamoto and Takashima (Asiacrypt ’12);

  • the first adaptively secure unbounded ABE scheme for arithmetic branching programs under static assumptions.

At the core of all of these constructions is a “bilinear entropy expansion” lemma that allows us to generate any polynomial amount of entropy starting from constant-size public parameters; the entropy can then be used to transform existing adaptively secure “bounded” ABE schemes into unbounded ones.

Notes

Acknowledgments

We greatly thank Katsuyuki Takashima for insightful and constructive feedback. We also thank all anonymous reviewers for their helpful comments.

References

  1. 1.
    Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: ACM CCS (2017)Google Scholar
  2. 2.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_31 CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_20 CrossRefGoogle Scholar
  4. 4.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D., Technion - Israel Institute of Technology (1996)Google Scholar
  5. 5.
    Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_13 CrossRefGoogle Scholar
  6. 6.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_20 Google Scholar
  7. 7.
    Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_25 CrossRefGoogle Scholar
  8. 8.
    Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_16 Google Scholar
  9. 9.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  10. 10.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_1 CrossRefGoogle Scholar
  11. 11.
    Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_21 CrossRefGoogle Scholar
  12. 12.
    Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_14 CrossRefGoogle Scholar
  13. 13.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  14. 14.
    Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_5 CrossRefGoogle Scholar
  15. 15.
    Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_54 Google Scholar
  16. 16.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
  17. 17.
    Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 524–541. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_26 CrossRefGoogle Scholar
  18. 18.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_20 CrossRefGoogle Scholar
  19. 19.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  20. 20.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_27 CrossRefGoogle Scholar
  21. 21.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_30 CrossRefGoogle Scholar
  22. 22.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  23. 23.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_22 CrossRefGoogle Scholar
  24. 24.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 463–474. ACM Press, November 2013Google Scholar
  25. 25.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27 CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  27. 27.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_26 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Jie Chen
    • 1
  • Junqing Gong
    • 2
  • Lucas Kowalczyk
    • 3
  • Hoeteck Wee
    • 3
    • 4
  1. 1.East China Normal UniversityShanghaiChina
  2. 2.ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL)LyonFrance
  3. 3.Columbia UniversityNew YorkUSA
  4. 4.CNRS, ENSParisFrance

Personalised recommendations