Advertisement

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions

  • Ilan Komargodski
  • Moni Naor
  • Eylon Yogev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10821)

Abstract

A collision resistant hash (CRH) function is one that compresses its input, yet it is hard to find a collision, i.e. a \(x_1 \ne x_2\) s.t. \(h(x_1) = h(x_2)\). Collision resistant hash functions are one of the more useful cryptographic primitives both in theory and in practice and two prominent applications are in signature schemes and succinct zero-knowledge arguments.

In this work we consider a relaxation of the above requirement that we call Multi-CRH: a function where it is hard to find \(x_1, x_2, \ldots , x_k\) which are all distinct, yet \( h(x_1) = h(x_2) = \cdots = h(x_k)\). We show that for some of the major applications of CRH functions it is possible to replace them by the weaker notion of a Multi-CRH, albeit at the price of adding interaction: we show a constant-round statistically-hiding commitment scheme with succinct interaction (committing to \(\mathsf {poly}(n)\) bits requires exchanging \(\tilde{O}(n)\) bits) that can be opened locally (without revealing the full string). This in turn can be used to provide succinct arguments for any \({\textsf {NP}}\) statement.

We formulate four possible worlds of hashing-related assumptions (in the spirit of Impagliazzo’s worlds). They are (1) Nocrypt, where no one-way functions exist, (2) Unihash, where one-way functions exist, and hence also UOWHFs and signature schemes, but no Multi-CRH functions exist, (3) Minihash, where Multi-CRH functions exist but no CRH functions exist, and (4) Hashomania, where CRH functions exist. We show that these four worlds are distinct in a black-box model: we show a separation of CRH from Multi-CRH and a separation of Multi-CRH from one-way functions.

Notes

Acknowledgments

We are grateful to Noga Ron-Zewi for teaching us about list-recoverable codes, for multiple useful discussions, and for sharing with us a preliminary version of [28]. We greatly acknowledge Gilad Asharov and Gil Segev for educating us about black-box separations. We thank Iftach Haitner and Eran Omri for answering questions related to [25]. We also thank Stefano Tessaro for telling us about [13, 40] and in particular for explaining the relation of [40] to this work.

References

  1. 1.
    Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 106–115. IEEE Computer Society (2001)Google Scholar
  4. 4.
    Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052256CrossRefGoogle Scholar
  6. 6.
    Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi collision resistant hash functions and their applications. IACR Cryptology ePrint Archive 2017, 489 (2017)Google Scholar
  7. 7.
    Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: A paradigm for keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017)Google Scholar
  8. 8.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coppersmith, D.: Another birthday attack. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 14–17. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39799-X_2CrossRefGoogle Scholar
  10. 10.
    Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_39CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding bit commitment schemes and fail-stop signatures. J. Cryptol. 10(3), 163–194 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Damgård, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit commitments. IEEE Trans. Inf. Theory 44(3), 1143–1151 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday barrier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_19CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In: Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 129–156. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-45961-8_12CrossRefGoogle Scholar
  16. 16.
    Girault, M., Stern, J.: On the length of cryptographic hash-values used in identification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 202–215. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48658-5_21Google Scholar
  17. 17.
    Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_30CrossRefGoogle Scholar
  18. 18.
    Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique decoding and new list-decodable codes over smaller alphabets. In: Proceedings on 34th Annual ACM Symposium on Theory of Computing, pp. 812–821. ACM (2002)Google Scholar
  19. 19.
    Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 126–135. ACM (2003)Google Scholar
  20. 20.
    Guruswami, V., Indyk, P.: Linear-time list decoding in error-free settings. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 695–707. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27836-8_59CrossRefGoogle Scholar
  21. 21.
    Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness extractors from parvaresh-vardy codes. J. ACM 56(4), 20:1–20:34 (2009)Google Scholar
  23. 23.
    Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols - tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Haitner, I., Horvitz, O., Katz, J., Koo, C., Morselli, R., Shaltiel, R.: Reducing complexity assumptions for statistically-hiding commitment. J. Cryptol. 22(3), 283–310 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Haitner, I., Ishai, Y., Omri, E., Shaltiel, R.: Parallel hashing via list recoverability. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 173–190. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_9CrossRefGoogle Scholar
  26. 26.
    Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999)Google Scholar
  28. 28.
    Hemenway, B., Ron-Zewi, N., Wootters, M.: Local list recovery of high-rate tensor codes & applications. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 204–215. IEEE Computer Society (2017)Google Scholar
  29. 29.
    Hemenway, B., Wootters, M.: Linear-time list recovery of high-rate expander codes. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 701–712. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47672-7_57CrossRefGoogle Scholar
  30. 30.
    Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algorithm. IACR Cryptology ePrint Archive 2017, 864 (2017)Google Scholar
  31. 31.
    Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_6CrossRefGoogle Scholar
  32. 32.
    Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the Tenth Annual Structure in Complexity Theory Conference, pp. 134–147. IEEE Computer Society (1995)Google Scholar
  33. 33.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)Google Scholar
  34. 34.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, FOCS, pp. 230–235. IEEE Computer Society (1989)Google Scholar
  35. 35.
    Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_19CrossRefGoogle Scholar
  36. 36.
    Katz, J., Koo, C.: On constructing universal one-way hash functions from arbitrary one-way functions. IACR Cryptology ePrint Archive 2005, 328 (2005)Google Scholar
  37. 37.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC, pp. 723–732. ACM (1992)Google Scholar
  38. 38.
    Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids: Dealing with multiple collisions. IACR Cryptology ePrint Archive 2017, 486 (2017)Google Scholar
  39. 39.
    Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of search problems: ramsey and graph property testing. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)Google Scholar
  40. 40.
    Maurer, U., Tessaro, S.: Domain extension of public random functions: beyond the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 187–204. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_11CrossRefGoogle Scholar
  41. 41.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_21CrossRefGoogle Scholar
  42. 42.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_40CrossRefGoogle Scholar
  43. 43.
    Mironov, I.: Collision-resistant no more: hash-and-sign paradigm revisited. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 140–156. Springer, Heidelberg (2006).  https://doi.org/10.1007/11745853_10CrossRefGoogle Scholar
  44. 44.
    Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM (1989)Google Scholar
  47. 47.
    Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-recoverable codes and recursion. In: 29th International Symposium on Theoretical Aspects of Computer Science, STACS. LIPIcs, vol. 14, pp. 230–241. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  48. 48.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM (1990)Google Scholar
  49. 49.
    Shoup, V.: A composition theorem for universal one-way hash functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_32CrossRefGoogle Scholar
  50. 50.
    Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054137CrossRefGoogle Scholar
  51. 51.
    Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 570–596. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_19CrossRefGoogle Scholar
  52. 52.
    Ta-Shma, A.: Explicit, almost optimal, epsilon-balanced codes. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 238–251 (2017)Google Scholar
  53. 53.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_2CrossRefGoogle Scholar
  54. 54.
    Wee, H.: One-way permutations, interactive hashing and statistically hiding commitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_23CrossRefGoogle Scholar
  55. 55.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Cornell TechNewYorkUSA
  2. 2.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations