Advertisement

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs

  • Dan Boneh
  • Yuval Ishai
  • Amit Sahai
  • David J. Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10822)

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying \(\mathsf {NP} \) computations with significantly less complexity than that required for classical \(\mathsf {NP} \) verification. In this work, we focus on simultaneously minimizing the proof size and the prover complexity of SNARGs. Concretely, for a security parameter \(\lambda \), we measure the asymptotic cost of achieving soundness error \(2^{-\lambda }\) against provers of size \(2^\lambda \). We say a SNARG is quasi-optimally succinct if its proof length is \(\widetilde{O}(\lambda )\), and that it is quasi-optimal, if moreover, its prover complexity is only polylogarithmically greater than the running time of the classical \(\mathsf {NP} \) prover. We show that this definition is the best we could hope for assuming that \(\mathsf {NP} \) does not have succinct proofs. Our definition strictly strengthens the previous notion of quasi-optimality introduced in the work of Boneh et al. (Eurocrypt 2017).

This work gives the first quasi-optimal SNARG for Boolean circuit satisfiability from a concrete cryptographic assumption. Our construction takes a two-step approach. The first is an information-theoretic construction of a quasi-optimal linear multi-prover interactive proof (linear MIP) for circuit satisfiability. Then, we describe a generic cryptographic compiler that transforms our quasi-optimal linear MIP into a quasi-optimal SNARG by relying on the notion of linear-only vector encryption over rings introduced by Boneh et al. Combining these two primitives yields the first quasi-optimal SNARG based on linear-only vector encryption. Moreover, our linear MIP construction leverages a new robust circuit decomposition primitive that allows us to decompose a circuit satisfiability instance into several smaller circuit satisfiability instances. This primitive may be of independent interest.

Finally, we consider (designated-verifier) SNARGs that provide optimal succinctness for a non-negligible soundness error. Concretely, we put forward the notion of “1-bit SNARGs” that achieve soundness error \(1\text {/}2\) with only one bit of proof. We first show how to build 1-bit SNARGs from indistinguishability obfuscation, and then show that 1-bit SNARGs also suffice for realizing a form of witness encryption. The latter result highlights a two-way connection between the soundness of very succinct argument systems and powerful forms of encryption.

Notes

Acknowledgments

We thank the anonymous reviewers for helpful feedback on the presentation. D. Boneh and D. J. Wu are supported by NSF, DARPA, a grant from ONR, and the Simons Foundation. Y. Ishai and A. Sahai are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, NSF-BSF grant 2015782, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. Y. Ishai is additionally supported by ISF grant 1709/14 and ERC grant 742754. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14165-2_14CrossRefGoogle Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC (1991)Google Scholar
  4. 4.
    Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_7CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_17CrossRefGoogle Scholar
  6. 6.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_6CrossRefGoogle Scholar
  7. 7.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a Von Neumann architecture. In: USENIX Security Symposium (2014)Google Scholar
  8. 8.
    Berman, I., Degwekar, A., Rothblum, R., Vasudevan, P.N.: From laconic zero-knowledge to public-key cryptography. In: Electronic Colloquium on Computational Complexity (ECCC) (2017)Google Scholar
  9. 9.
    Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A., Tromer, E.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS (2012)Google Scholar
  11. 11.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: STOC (2013)Google Scholar
  12. 12.
    Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_16CrossRefGoogle Scholar
  13. 13.
    Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_18CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_9CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/133.pdf
  16. 16.
    Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Process. Lett. 25(2), 127–132 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying computations with state. In: SOSP (2013)Google Scholar
  19. 19.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: ITCS (2012)Google Scholar
  20. 20.
    Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE SP (2015)Google Scholar
  21. 21.
    Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_36Google Scholar
  22. 22.
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_4CrossRefGoogle Scholar
  23. 23.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_23CrossRefGoogle Scholar
  24. 24.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to Succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_28Google Scholar
  25. 25.
    Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_6CrossRefGoogle Scholar
  26. 26.
    Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete (preliminary version). In: FOCS (1991)Google Scholar
  27. 27.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12Google Scholar
  28. 28.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: STOC (2013)Google Scholar
  29. 29.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  30. 30.
    Gentry, C., Wichs, D.: Separating Succinct non-interactive arguments from all falsifiable assumptions. In: STOC (2011)Google Scholar
  31. 31.
    Goldreich, O.: The Foundations of Cryptography, Basic Techniques, vol. 1. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a Laconic prover. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 334–345. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-48224-5_28CrossRefGoogle Scholar
  34. 34.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC (2008)Google Scholar
  35. 35.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC (1985)Google Scholar
  36. 36.
    Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_12CrossRefGoogle Scholar
  37. 37.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASIACRYPT (2010)Google Scholar
  38. 38.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT (2016)Google Scholar
  39. 39.
    Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_20CrossRefGoogle Scholar
  40. 40.
    Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055744Google Scholar
  41. 41.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: CCC (2007)Google Scholar
  42. 42.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC (2007)Google Scholar
  43. 43.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: TCC (2009)Google Scholar
  44. 44.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC (1992)Google Scholar
  45. 45.
    Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_10CrossRefGoogle Scholar
  46. 46.
    Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_3CrossRefGoogle Scholar
  47. 47.
    Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 185–206. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_10CrossRefGoogle Scholar
  48. 48.
    Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. In: FOCS (1990)Google Scholar
  49. 49.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptology 2(4), 343–363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_6CrossRefGoogle Scholar
  52. 52.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy (2013)Google Scholar
  53. 53.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014)Google Scholar
  54. 54.
    Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems for outsourced computation practical (sometimes). In: NDSS (2012)Google Scholar
  55. 55.
    Setty, S.T.V., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality. In: USENIX Security Symposium (2012)Google Scholar
  56. 56.
    Shamir, A.: IP=PSPACE. In: FOCS (1990)Google Scholar
  57. 57.
    Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_5CrossRefGoogle Scholar
  58. 58.
    Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with massively parallel interactive proofs. In: HotCloud (2012)Google Scholar
  59. 59.
    Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: TCC (2008)Google Scholar
  60. 60.
    Vu, V., Setty, S.T.V., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive verifiable computation. In: IEEE SP (2013)Google Scholar
  61. 61.
    Wahby, R.S., Howald, M., Garg, S.J., Shelat, A., Walfish, M.: Verifiable ASICs. In: IEEE Symposium on Security and Privacy (2016)Google Scholar
  62. 62.
    Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies, T.: Full accounting for verifiable outsourcing. In: ACM CCS (2017)Google Scholar
  63. 63.
    Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and control flow in verifiable outsourced computation. In: NDSS (2015)Google Scholar
  64. 64.
    Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Commun. ACM 58(2), 74–84 (2015)CrossRefGoogle Scholar
  65. 65.
    Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 140–152. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_12CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Dan Boneh
    • 1
    • 4
  • Yuval Ishai
    • 2
    • 3
    • 4
  • Amit Sahai
    • 3
    • 4
  • David J. Wu
    • 1
    • 4
  1. 1.Stanford UniversityStanfordUSA
  2. 2.TechnionHaifaIsrael
  3. 3.UCLALos AngelesUSA
  4. 4.Center for Encrypted FunctionalitiesLos AngelesUSA

Personalised recommendations