Advertisement

Efficient Circuit-Based PSI via Cuckoo Hashing

  • Benny Pinkas
  • Thomas Schneider
  • Christian Weinert
  • Udi Wieder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10822)

Abstract

While there has been a lot of progress in designing efficient custom protocols for computing Private Set Intersection (PSI), there has been less research on using generic Multi-Party Computation (MPC) protocols for this task. However, there are many variants of the set intersection functionality that are not addressed by the existing custom PSI solutions and are easy to compute with generic MPC protocols (e.g., comparing the cardinality of the intersection with a threshold or measuring ad conversion rates).

Generic PSI protocols work over circuits that compute the intersection. For sets of size n, the best known circuit constructions conduct \(O(n \log n)\) or \(O(n \log n / \log \log n)\) comparisons (Huang et al., NDSS’12 and Pinkas et al., USENIX Security’15). In this work, we propose new circuit-based protocols for computing variants of the intersection with an almost linear number of comparisons. Our constructions are based on new variants of Cuckoo hashing in two dimensions.

We present an asymptotically efficient protocol as well as a protocol with better concrete efficiency. For the latter protocol, we determine the required sizes of tables and circuits experimentally, and show that the run-time is concretely better than that of existing constructions.

The protocol can be extended to a larger number of parties. The proof technique presented in the full version for analyzing Cuckoo hashing in two dimensions is new and can be generalized to analyzing standard Cuckoo hashing as well as other new variants of it.

Keywords

Private set intersection Secure computation 

Notes

Acknowledgments

We thank Oleksandr Tkachenko for his invaluable help with the implementation and benchmarking. We also thank Moni Naor for suggesting the application to achieve differential privacy. This work has been co-funded by the DFG as part of project E4 within the CRC 1119 CROSSING and by the German Federal Ministry of Education and Research (BMBF), the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP, and the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. Calculations for this research were conducted on the Lichtenberg high performance computer of the TU Darmstadt.

References

  1. 1.
    Amossen, R.R., Pagh, R.: A new data layout for set intersection on GPUs. In: International Symposium on Parallel and Distributed Processing (IPDPS) (2011)Google Scholar
  2. 2.
    Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-case operations with a succinct representation. In: FOCS (2010)Google Scholar
  3. 3.
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: CCS (2013)Google Scholar
  4. 4.
    Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider, T., Stelle, S.: CrowdShare: secure mobile resource sharing. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 432–440. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_27CrossRefGoogle Scholar
  5. 5.
    Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189. Springer, Heidelberg (2006).  https://doi.org/10.1007/11821069_16CrossRefGoogle Scholar
  6. 6.
    Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: CCS (2017)Google Scholar
  7. 7.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01957-9_8CrossRefGoogle Scholar
  8. 8.
    Davidson, A., Cid, C.: An efficient toolkit for computing private set operations. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 261–278. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59870-3_15CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35404-5_17CrossRefGoogle Scholar
  10. 10.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_13CrossRefGoogle Scholar
  11. 11.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14577-3_13CrossRefGoogle Scholar
  12. 12.
    Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23318-5_12CrossRefGoogle Scholar
  13. 13.
    Demmler, D., Schneider, T., Zohner, M.: ABY – a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)Google Scholar
  14. 14.
    Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication barrier in secure computation using lookup tables. In: NDSS (2017)Google Scholar
  15. 15.
    Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: CCS (2013)Google Scholar
  17. 17.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_1CrossRefGoogle Scholar
  18. 18.
    Eppstein, D., Goodrich, M., Mitzenmacher, M., Torres, M.: 2–3 cuckoo filters for faster triangle listing and set intersection. In: Symposium on Principles of Database Systems (PODS) (2017)Google Scholar
  19. 19.
    Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptol. 29(1), 115–155 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_1CrossRefGoogle Scholar
  21. 21.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)Google Scholar
  22. 22.
    Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28(2), 289–304 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hallgren, P., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving ridesharing. In: Computer Security Foundations Symposium (CSF) (2017)Google Scholar
  24. 24.
    Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_8CrossRefGoogle Scholar
  25. 25.
    Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on smartphones. In: Hot Topics in Security (HotSec) (2011)Google Scholar
  26. 26.
    Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom protocols? In: NDSS (2012)Google Scholar
  27. 27.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security (2011)Google Scholar
  28. 28.
    Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S., Seth, K., Shanahan, D., Yung, M.: Private intersection-sum protocol with applications to attributing aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017)Google Scholar
  29. 29.
    Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. In: PoPETs, vol. 2017(4) (2017)Google Scholar
  31. 31.
    Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: CCS (2016)Google Scholar
  32. 32.
    Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: CCS (2017)Google Scholar
  33. 33.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefGoogle Scholar
  34. 34.
    Kreuter, B.: Secure multiparty computation at Google. In: Real World Crypto Conference (RWC) (2017)Google Scholar
  35. 35.
    Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: S&P (1986)Google Scholar
  36. 36.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. In: European Symposium on Algorithms (ESA) (2001)Google Scholar
  37. 37.
    Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)Google Scholar
  38. 38.
    Pettai, M., Laud, P.: Combining differential privacy and secure multiparty computation. In: ACSAC (2015)Google Scholar
  39. 39.
    Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX Security (2015)Google Scholar
  40. 40.
    Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via cuckoo hashing. In: Cryptology ePrint Archive, Report 2018/120 (2018)Google Scholar
  41. 41.
    Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security (2014)Google Scholar
  42. 42.
    Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. (TOPS) 21(2) (2018)Google Scholar
  43. 43.
    Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_9CrossRefGoogle Scholar
  44. 44.
    Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: CCS (2017)Google Scholar
  45. 45.
    Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_23CrossRefGoogle Scholar
  46. 46.
    Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg (1980).  https://doi.org/10.1007/3-540-10003-2_100CrossRefGoogle Scholar
  47. 47.
    Wieder, U.: Hashing, load balancing and multiple choice. Found. Trends Theoret. Comput. Sci. 12(3–4), 275–379 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)Google Scholar
  49. 49.
    Yung, M.: From mental poker to core business: why and how to deploy secure computation protocols? In: CCS (2015)Google Scholar
  50. 50.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Benny Pinkas
    • 1
  • Thomas Schneider
    • 2
  • Christian Weinert
    • 2
  • Udi Wieder
    • 3
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.TU DarmstadtDarmstadtGermany
  3. 3.VMware ResearchPalo AltoUSA

Personalised recommendations