Skip to main content

Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

  • 1109 Accesses

Abstract

We consider inequalities of the Poincaré–Steklov type for subspaces of \(H^1\)-functions defined in a bounded domain \(\varOmega \in \mathbb {R}^d\) with Lipschitz boundary \(\partial \varOmega \). For scalar valued functions, the subspaces are defined by zero mean condition on \(\partial \varOmega \) or on a part of \(\partial \varOmega \) having positive \(d-1\) measure. For vector valued functions, zero mean conditions are applied to normal components on plane faces of \(\partial \varOmega \) (or to averaged normal components on curvilinear faces). We find explicit and simply computable bounds of constants in the respective Poincaré type inequalities for domains typically used in finite element methods (triangles, quadrilaterals, tetrahedrons, prisms, pyramids, and domains composed of them). The second part of the paper discusses applications of the estimates to interpolation of scalar and vector valued functions on macrocells and on meshes with non-overlapping and overlapping cells.

Dedicated to Professor Yuri Kuznetsov on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta G, Durán RG (2004) An optimal Poincaré inequality in \(L^1\) for convex domains. Proc Amer Math Soc 132(1):195–202

    Article  MathSciNet  Google Scholar 

  2. Arnold D, Boffi D, Falk R (2002) Approximation by quadrilateral finite elements. Math Comp 71(239):909–922

    Article  MathSciNet  Google Scholar 

  3. Arnold D, Boffi D, Falk R (2005) Quadrilateral H(div) finite elements. SIAM J Numer Anal 42(6):2429–2451

    Article  MathSciNet  Google Scholar 

  4. Babuška I, Aziz A (1976) On the angle condition in the finite element method. SIAM J Numer Anal 13(2):214–226

    Article  MathSciNet  Google Scholar 

  5. Bermúdez A, Gamallo P, Nogueiras MR, Rodríguez R (2005) Approximation properties of lowest-order hexahedral Raviart-Thomas finite elements. C R Math Acad Sci Paris 340(9):687–692

    Article  MathSciNet  Google Scholar 

  6. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  Google Scholar 

  7. Brezzi F, Lipnikov K, Shashkov M, Simoncini V (2007) A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput Methods Appl Mech Engrg 196(37–40):3682–3692

    Article  MathSciNet  Google Scholar 

  8. Cheng SY (1975) Eigenvalue comparison theorems and its geometric applications. Math Z 143(3):289–297

    Article  MathSciNet  Google Scholar 

  9. Chua S-K, Wheeden RL (2006) Estimates of best constants for weighted Poincaré inequalities on convex domains. Proc London Math Soc (3), 93(1):197–226

    Google Scholar 

  10. Chua S-K, Wheeden RL (2010) Weighted Poincaré inequalities on convex domains. Math Res Lett 17(5):993–1011

    Article  MathSciNet  Google Scholar 

  11. Fox DW, Kuttler JR (1983) Sloshing frequencies. Z Angew Math Phys 34(5):668–696

    Article  MathSciNet  Google Scholar 

  12. Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer, Berlin

    Book  Google Scholar 

  13. Hackbusch W, Löhndorf M, Sauter SA (2006) Coarsening of boundary-element spaces. Computing 77(3):253–273

    Article  MathSciNet  Google Scholar 

  14. Hecht F (2012) New development in FreeFem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  15. Kozlov V, Kuznetsov N (2004) The ice-fishing problem: The fundamental sloshing frequency versus geometry of holes. Math Methods Appl Sci 27(3):289–312

    Article  MathSciNet  Google Scholar 

  16. Kozlov V, Kuznetsov N, Motygin O (2004) On the two-dimensional sloshing problem. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2049):2587–2603

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov Yu (2006) Mixed finite element method for diffusion equations on polygonal meshes with mixed cells. J Numer Math 14(4):305–315

    Article  MathSciNet  Google Scholar 

  18. Kuznetsov Yu (2011) Approximations with piece-wise constant fluxes for diffusion equations. J Numer Math 19(4):309–328

    Article  MathSciNet  Google Scholar 

  19. Kuznetsov Yu (2014) Mixed FE method with piece-wise constant fluxes on polyhedral meshes. Russian J Numer Anal Math Modelling 29(4):231–237

    Article  MathSciNet  Google Scholar 

  20. Kuznetsov Yu (2015) Error estimates for the \(RT_0\) and PWCF methods for the diffusion equations on triangular and tetrahedral meshes. Russian J Numer Anal Math Modelling 30(2):95–102

    Article  MathSciNet  Google Scholar 

  21. Kuznetsov Yu, Prokopenko A (2010) A new multilevel algebraic preconditioner for the diffusion equation in heterogeneous media. Numer Linear Algebra Appl 17(5):759–769

    Article  MathSciNet  Google Scholar 

  22. Kuznetsov Yu, Repin S (2003) New mixed finite element method on polygonal and polyhedral meshes. Russian J Numer Anal Math Modelling 18(3):261–278

    Article  MathSciNet  Google Scholar 

  23. Laugesen RS, Siudeja BA (2010) Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J Differen Equat 249(1):118–135

    Article  Google Scholar 

  24. Mali O, Neittaanmäki P, Repin S (2014) Accuracy verification methods: Theory and algorithms, vol 32. Computational Methods in Applied Sciences. Springer, Dordrecht

    Google Scholar 

  25. Matculevich S, Neittaanmäki P, Repin S (2015) A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality. Discrete Contin Dyn Syst 35(6):2659–2677

    Article  MathSciNet  Google Scholar 

  26. Matculevich S, Repin S (2016) Explicit constants in Poincaré-type inequalities for simplicial domains and application to a posteriori estimates. Comput Methods Appl Math 16(2):277–298

    Article  MathSciNet  Google Scholar 

  27. Nazarov A, Repin S (2015) Exact constants in Poincaré type inequalities for functions with zero mean boundary traces. Math Methods Appl Sci 38(15):3195–3207

    Article  MathSciNet  Google Scholar 

  28. Payne LE, Weinberger HF (1960) An optimal Poincaré inequality for convex domains. Arch Rational Mech Anal 5:286–292

    Article  MathSciNet  Google Scholar 

  29. Poincaré H (1894) Sur les équations de la physique mathématique. Rend Circ Mat Palermo 8:57–155

    Article  Google Scholar 

  30. Repin S (2008) A posteriori estimates for partial differential equations. Walter de Gruyter, Berlin

    Book  Google Scholar 

  31. Repin S (2015) Estimates of constants in boundary-mean trace inequalities and applications to error analysis. In: Abdulle A, Deparis S, Kressner D, Nobile F, Picasso M, (eds) Numerical Mathematics and Advanced Applications – ENUMATH2013, volume 103 of Lecture Notes in Computational Science and Engineering, pp 215–223

    Google Scholar 

  32. Repin S (2015) Interpolation of functions based on Poincaré type inequalities for functions with zero mean boundary traces. Russian J Numer Anal Math Modelling 30(2):111–120

    Article  MathSciNet  Google Scholar 

  33. Roberts JE, Thomas J-M (1991) Mixed and hybrid methods. In: Handbook of Numerical Analysis, Vol II, pp 523–639. North-Holland, Amsterdam,

    Google Scholar 

  34. Steklov VA (1896) On the expansion of a given function into a series of harmonic functions. Commun Kharkov Math Soc Ser 2(5):60–73 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Repin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Repin, S. (2019). Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics