Skip to main content

Arbitrary Lagrangian-Eulerian Finite Element Method Preserving Convex Invariants of Hyperbolic Systems

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

  • 1024 Accesses

Abstract

We present a conservative Arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems. The key characteristics of the method is that it preserves all the convex invariants of the hyperbolic system in question. The method is explicit in time, uses continuous finite elements and is first-order accurate in space and high-order in time. The stability of the method is obtained by introducing an artificial viscosity that is unambiguously defined irrespective of the mesh geometry/anisotropy and does not depend on any ad hoc parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth M (2014) Pyramid algorithms for Bernstein-Bézier finite elements of high, nonuniform order in any dimension. SIAM J Sci Comput 36(2):A543–A569

    Article  Google Scholar 

  2. Bangerth W, Hartmann R, Kanschat G (2007) deal.II – a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):Art. 24, 27 (27 pp)

    Article  MathSciNet  Google Scholar 

  3. Caramana E, Shashkov M, Whalen P (1998) Formulations of artificial viscosity for multi-dimensional shock wave computations. J Comput Phys 144(1):70–97

    Article  MathSciNet  Google Scholar 

  4. Chen G-Q (2005) Euler equations and related hyperbolic conservation laws. In: Evolutionary equations, Vol. II, Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, pp 1–104

    Google Scholar 

  5. Chueh KN, Conley CC, Smoller JA (1977) Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ Math J 26(2):373–392

    Article  MathSciNet  Google Scholar 

  6. Dafermos CM (2000) Hyperbolic conservation laws in continuum physics, vol 325. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin

    Google Scholar 

  7. Farhat C, Geuzaine P, Grandmont C (2001) The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J Comput Phys 174(2):669–694

    Article  MathSciNet  Google Scholar 

  8. Ferracina L, Spijker MN (2005) An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math Comp 74(249):201–219

    Article  MathSciNet  Google Scholar 

  9. Frid H (2001) Maps of convex sets and invariant regions for finite-difference systems of conservation laws. Arch Ration Mech Anal 160(3):245–269

    Article  MathSciNet  Google Scholar 

  10. Gottlieb S, Ketcheson DI, Shu C-W (2009) High order strong stability preserving time discretizations. J Sci Comput 38(3):251–289

    Article  MathSciNet  Google Scholar 

  11. Guermond J-L, Popov B (2016) Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J Comput Phys 321:908–926

    Article  MathSciNet  Google Scholar 

  12. Guermond J-L, Popov B (2016) Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J Numer Anal 54(4):2466–2489

    Article  MathSciNet  Google Scholar 

  13. Guermond J-L, Popov B, Saavedra L, Yang Y (2017) Invariant domains preserving ALE approximation of hyperbolic systems with continuous finite elements. SIAM J Sci Comput 39(2):A385–A414. arXiv:1603.01184 [math.NA].

  14. Higueras I (2005) Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J Numer Anal 43(3):924–948

    Article  MathSciNet  Google Scholar 

  15. Hoff D (1985) Invariant regions for systems of conservation laws. Trans Am Math Soc 289(2):591–610

    Article  MathSciNet  Google Scholar 

  16. Lai M-J, Schumaker LL (2007) Spline functions on triangulations, vol 110. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Loubère R, Maire P-H, Shashkov M, Breil J, Galera S (2010) ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method. J Comput Phys 229(12):4724–4761

    Article  MathSciNet  Google Scholar 

  18. Pironneau O (1981/82) On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer Math 38(3):309–332

    Google Scholar 

  19. Pironneau O (1989) Finite element methods for fluids. Wiley, Chichester (translated from the French)

    MATH  Google Scholar 

  20. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd edn. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Guermond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guermond, JL., Popov, B., Saavedra, L., Yang, Y. (2019). Arbitrary Lagrangian-Eulerian Finite Element Method Preserving Convex Invariants of Hyperbolic Systems. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics