Skip to main content

Two Decades of Wave-Like Equation for the Numerical Simulation of Incompressible Viscous Flow: A Review

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

Abstract

A wave-like equation based method for the numerical solution of the Navier-Stokes equations modeling incompressible viscous flow was introduced nearly twenty years ago. From its inception to nowadays it has been applied successfully to the numerical solution of two and three dimensional flow problems for incompressible Newtonian and non-Newtonian viscous fluids, in flow regions with fixed or moving boundaries. The main goals of this article are: (i) To recall the foundations of the wave-like equation methodology, and (ii) to review some typical viscous flow problems where it has been applied successfully.

Dedicated to W. Fitzgibbon, Y. Kuznetsov and O. Pironneau on the occasion of their 70th anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anupindi K, Lai W, Frankel S (2014) Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method. Comput Fluids 92:7–21

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaijens FPT (1998) Mixed finite element methods for viscoelastic flow analysis: a review. J Non-Newton Fluid Mech 79(2–3):361–385

    Article  MATH  Google Scholar 

  3. Bristeau MO, Glowinski R, Périaux J (1987) Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible viscous flow. Comput Phys Rep 6:73–187

    Article  MathSciNet  Google Scholar 

  4. Chhabra RP (1993) Bubbles, drops, and particles in non-Newtonian fluids. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Chiang TP, Sheu WH, Hwang RR (1998) Effect of Reynolds number on the eddy structure in a lid-driven cavity. Int J Numer Meth Fluids 26(5):557–579

    Article  MATH  Google Scholar 

  6. Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Non-Newton Fluid Mech 29:381–432

    Article  MATH  Google Scholar 

  7. Chippada S, Dawson CN, Martinez ML, Wheeler MF (1998) Finite element approximations to the system of shallow water equations I: continuous-time a priori error estimates. SIAM J Numer Anal 35(2):692–711

    Article  MathSciNet  MATH  Google Scholar 

  8. Chippada S, Dawson CN, Martínez-Canales ML, Wheeler MF (1998) Finite element approximations to the system of shallow water equations, Part II: discrete-time a priori error estimates. SIAM J Numer Anal 36(1):226–250

    Article  MATH  Google Scholar 

  9. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26

    Article  MathSciNet  MATH  Google Scholar 

  10. Dean EJ, Glowinski R (1997) A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow. CR Acad Sci Paris Sér I Math 325(7):783–791

    Article  MathSciNet  MATH  Google Scholar 

  11. Dean EJ, Glowinski R, Guidoboni G (2007) On the numerical simulation of Bingham visco-plastic flow: old and new results. J Non-Newton Fluid Mech 142(1–3):36–62

    Article  MATH  Google Scholar 

  12. Dean EJ, Glowinski R, Pan T-W (1998) A wave equation approach to the numerical simulation of incompressible viscous fluid flow modelled by the Navier-Stokes equations. In: De Santo JA (ed) Mathematical and numerical aspects of wave propagation (Golden. CO, 1998). Philadelphia, PA, pp 65–74

    Google Scholar 

  13. Economides MJ, Nolte KG (1989) Reservoir stimulation. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  14. Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Non-Newton Fluid Mech 123(2–3):281–285

    Article  MATH  Google Scholar 

  15. Fattal R, Kupferman R (2005) Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J Non-Newton Fluid Mech 126(1):23–37

    Article  MATH  Google Scholar 

  16. Feldman Y, Gelfgat AY (2010) Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys Fluids 22:093602

    Article  Google Scholar 

  17. Fujima S, Tabata M, Fukasawa Y (1994) Extension to three-dimensional problems of the upwind finite element scheme based on the choice of up- and downwind points. Comput Methods Appl Mech Eng. 112:109–131

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghia UK, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  MATH  Google Scholar 

  19. Giannetti R, Luchini P, Marino L (2009) Linear stability analysis of three-dimensional lid-driven cavity flow. In: Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata (Ancona, 2009), Aras Edizioni, pp 738.1–738.10

    Google Scholar 

  20. Glowinski R (2003) Finite element methods for incompressible viscous flow. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol IX. North-Holland, Amsterdam, pp 3–1176

    Google Scholar 

  21. Glowinski R (2015) Variational methods for the numerical solution of nonlinear elliptic problems. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  22. Glowinski R, Dean EJ, Guidoboni G, Juárez LH, Pan T-W (2008) Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Jap J Indust Appl Math 25(1):1–63

    Article  MATH  Google Scholar 

  23. Glowinski R, Guidoboni G, Pan T-W (2006) Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J Comput Phys 216(1):76–91

    Article  MathSciNet  MATH  Google Scholar 

  24. Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: Glowinski R, Lichnewsky A (eds) Computing methods in applied sciences and engineering (Paris, 1990). SIAM, Philadelphia, PA, pp 55–120

    MATH  Google Scholar 

  25. Glowinski R, Osher S, Yin W (eds) (2016) Splitting methods in communication and imaging, science and engineering. Springer, New York

    MATH  Google Scholar 

  26. Glowinski R, Pan T-W, Hesla TI, Joseph DD, Périaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426

    Article  MathSciNet  MATH  Google Scholar 

  27. Glowinski R, Wachs A (2011) On the numerical simulation of viscoplastic fluid flow. In: Ciarlet PG, Glowinski R, Xu J (eds) Handbook of numerical analysis, vol XVI. North-Holland, Amsterdam, pp 483–718

    MATH  Google Scholar 

  28. Gustafsson B, Kreiss H-O, Oliger J (1995) Time dependent problems and difference methods. Wiley, New York

    MATH  Google Scholar 

  29. Hao J, Pan T-W, Glowinski R, Joseph DD (2009) A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids: a positive definiteness preserving approach. J Non-Newton Fluid Mech 156(1–2):95–111

    Article  MATH  Google Scholar 

  30. He Q, Glowinski R, Wang XP (2011) A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230(12):4991–5009

    Article  MathSciNet  MATH  Google Scholar 

  31. Hou S, Pan T-W, Glowinski R (2014) Circular band formation for incompressible viscous fluid-rigid-particle mixtures in a rotating cylinder. Phys Rev E 89(2):023013

    Article  Google Scholar 

  32. Huang PY, Hu HH, Joseph DD (1998) Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids. J Fluid Mech 362:297–326

    Article  MathSciNet  MATH  Google Scholar 

  33. Hur SC, Choi SE, Kwon S, Di Carlo D (2011) Inertial focusing of non-spherical microparticles. Appl Phys Lett 99(4):044101

    Article  Google Scholar 

  34. Iwatsu R, Hyun JM, Kuwahara K (1990) Analyses of three-dimensional flow calculations in a driven cavity. Fluid Dyn Res 6(2):91–102

    Article  Google Scholar 

  35. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London A 102:161–179

    Article  MATH  Google Scholar 

  36. Joseph DD (1990) Fluid dynamics of viscoelastic liquids. Springer, New York

    Book  MATH  Google Scholar 

  37. Karnis A, Goldsmith HL, Mason SG (1966) The flow of suspensions through tubes: V. Inertial effects. Can J Chem Eng 44(4):181–193

    Article  Google Scholar 

  38. Keunings R (2000) A survey of computational rheology. In: Binding DM et al (eds) Proceedings of the 13th international congress on rheology, vol 1. British Society of Rheology, Glasgow, pp 7–14

    Google Scholar 

  39. Ku HC, Hirsh RS, Taylor TD (1987) A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations. J Comput Phys 70(2):439–462

    Article  MATH  Google Scholar 

  40. Lee Y-J, Xu J (2006) New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput Methods Appl Mech Eng 195(9–12):1180–1206

    Article  MathSciNet  MATH  Google Scholar 

  41. Liberzon A, Feldman Y, Gelfgat A (2011) Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity. Phys Fluids 23:084106

    Article  Google Scholar 

  42. Liu YJ, Joseph DD (1993) Sedimentation of particles in polymer solutions. J Fluid Mech 255:565–595

    Article  Google Scholar 

  43. Lozinski A, Owens RG (2003) An energy estimate for the Oldroyd-B model: theory and applications. J Non-Newton Fluid Mech 112(2–3):161–176

    Article  MATH  Google Scholar 

  44. Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7(3):207–228

    Article  MATH  Google Scholar 

  45. McKinley GH (2002) Steady and transient motion of spherical particles in viscoelastic liquids. In: De Kee D, Chhabra RP (eds) Transport processes in bubbles, drops, and particles, 2nd edn. Taylor & Francis, New York, pp 338–375

    Google Scholar 

  46. Pan T-W, Chang C-C, Glowinski R (2008) On the motion of a neutrally buoyant ellipsoid in a three-dimensional Poiseuille flow. Comput Methods Appl Mech Eng 197(25–28):2198–2209

    Article  MathSciNet  MATH  Google Scholar 

  47. Pan T-W, Glowinski R (2000) A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Comput Fluid Dyn J 9(2):28–42

    Google Scholar 

  48. Pan T-W, Hao J, Glowinski R (2009) On the simulation of a time-dependent cavity flow of an Oldroyd-B fluid. Int J Numer Meth Fluids 60(7):791–808

    Article  MathSciNet  MATH  Google Scholar 

  49. Pan T-W, Hao J, Glowinski R (2011) Positive definiteness preserving approaches for viscoelastic flow of Oldroyd-B fluids: applications to a lid-driven cavity flow and a particulate flow. In: Ciarlet PG, Glowinski R, Xu J (eds) Handbook of numerical analysis, vol XVI. North-Holland, Amsterdam, pp 433–481

    MATH  Google Scholar 

  50. Pan T-W, Joseph DD, Glowinski R (2005) Simulating the dynamics of fluid-ellipsoid interactions. Comput Struct. 83(6–7):463–478

    Article  Google Scholar 

  51. Patankar NA, Hu HH (2000) A numerical investigation of the detachment of the trailing particle from a chain sedimenting in Newtonian and viscoelastic fluids. J Fluids Eng 122(3):517–521

    Article  Google Scholar 

  52. Pironneau O (1989) Finite element methods for fluids. Wiley, Chichester

    MATH  Google Scholar 

  53. Rallison JM, Hinch EJ (1988) Do we understand the physics in the constitutive equation? J Non-Newton Fluid Mech 29:37–55

    Article  Google Scholar 

  54. Segré G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  55. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14(1):115–135

    Article  MATH  Google Scholar 

  56. Singh P, Joseph DD, Hesla TI, Glowinski R, Pan T-W (2000) A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. J Non-Newton Fluid Mech 91(2–3):165–188

    Article  MATH  Google Scholar 

  57. Süli E (1988) Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer Math 53(4):459–483

    Article  MathSciNet  MATH  Google Scholar 

  58. Süli E (1988) Stability and convergence of the Lagrange-Galerkin method with nonexact integration. In: Whiteman JR (ed) The mathematics of finite elements and applications, VI (Uxbridge, 1987). Academic Press, London, pp 435–442

    Google Scholar 

  59. Tagliabue A, Dedè L, Quarteroni A (2014) Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput Fluids 102:277–303

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu J (1994) Wave equation models for solving advection-diffusion equation. Int J Numer Methods Eng 37(16):2717–2733

    Article  MATH  Google Scholar 

  61. Wu J (1997) A wave equation model to solve the multidimensional transport equation. Int J Numer Meth Fluids 24(5):423–439

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors of this article are thanking the editors of this volume, a very special thank being due to Marja-Leena Rantalainen, from the University of Jyväskylä in Finland, for her beautiful processing of this contribution. The support of the US National Science Foundation via grant DMS-1418308 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glowinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glowinski, R., Pan, TW. (2019). Two Decades of Wave-Like Equation for the Numerical Simulation of Incompressible Viscous Flow: A Review. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics