Skip to main content

Mixed Formulation of a Linearized Lubrication Fracture Model in a Poro-elastic Medium

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

Abstract

We analyse and discretize a mixed formulation for a linearized lubrication fracture model in a poro-elastic medium. The displacement of the medium is expressed in primary variables while the flows in the medium and fracture are written in mixed form, with an additional unknown for the pressure in the fracture. The fracture is treated as a non-planar surface or curve according to the dimension, and the lubrication equation for the flow in the fracture is linearized. The resulting equations are discretized by finite elements adapted to primal variables for the displacement and mixed variables for the flow. Stability and a priori error estimates are derived. A fixed-stress algorithm is proposed for decoupling the computation of the displacement and flow and a numerical experiment is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alboin C, Jaffré J, Roberts JE, Serres C (2001) Modeling fractures as interfaces for flow and transport in porous media. In: Chen Z, Ewing RE (eds) Fluid flow and transport in porous media: mathematical and numerical treatment. South Hadley, MA. (Vol 295 of Contemporary Mathematics). American Mathematical Society, Providence, RI, pp 13–24 (2002)

    Google Scholar 

  2. Babus̆ka I (1972/73) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

    Google Scholar 

  3. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  4. Bourgeat A, Mikelić A, Piatnitski A (2003) On the double porosity model of a single phase flow in random media. Asymptot Anal 34(3–4):311–332

    MathSciNet  MATH  Google Scholar 

  5. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, 3rd edn. Springer, New York

    Book  Google Scholar 

  6. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev Française Automat Inform Rech Opér Anal Numér 8(R–2):129–151

    MathSciNet  MATH  Google Scholar 

  7. Brezzi F, Douglas J Jr, Durán R, Fortin M (1987) Mixed finite elements for second order elliptic problems in three variables. Numer Math 51(2):237–250

    Article  MathSciNet  Google Scholar 

  8. Brezzi F, Douglas J Jr, Marini LD (1985) Two families of mixed finite elements for second order elliptic problems. Numer Math 47(2):217–235

    Article  MathSciNet  Google Scholar 

  9. Ciarlet PG (1991) Basic error estimates for elliptic problems. In: Handbook of numerical analysis, Vol II. North-Holland, Amsterdam, pp 17–351

    Google Scholar 

  10. Dean RH, Schmidt JH (2009) Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPE J 14(04):707–714

    Article  Google Scholar 

  11. Fasano A, Mikelić A, Primicerio M (1998) Homogenization of flows through porous media with permeable grains. Adv Math Sci Appl 8(1):1–31

    MathSciNet  MATH  Google Scholar 

  12. Galvis J, Sarkis M (2007) Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron Trans Numer Anal 26:350–384

    MathSciNet  MATH  Google Scholar 

  13. Ganis B, Girault V, Mear M, Singh G, Wheeler MF (2014) Modeling fractures in a poro-elastic medium. Oil Gas Sci Tech 69(4):515–528

    Article  Google Scholar 

  14. Girault V, Kumar K, Wheeler MF (2016) Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput Geosci 20(5):997–1011

    Article  MathSciNet  Google Scholar 

  15. Girault V, Pencheva G, Wheeler MF, Wildey T (2011) Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math Models Methods Appl Sci 21(1):169–213

    Article  MathSciNet  Google Scholar 

  16. Girault V, Raviart P-A (1986) Finite element methods for Navier-Stokes equations: theory and algorithms, vol 5. Springer Series in Computational Mathematics. Springer, Berlin

    Google Scholar 

  17. Girault V, Wheeler MF, Ganis B, Mear ME (2013) A lubrication fracture model in a poro-elastic medium. ICES Report 13-32, Institute for Computational Engineering and Sciences, University of Texas at Austin

    Google Scholar 

  18. Girault V, Wheeler MF, Ganis B, Mear ME (2015) A lubrication fracture model in a poro-elastic medium. Math Models Methods Appl Sci 25(4):587–645

    Article  MathSciNet  Google Scholar 

  19. Ingram R, Wheeler MF, Yotov I (2010) A multipoint flux mixed finite element method on hexahedra. SIAM J Numer Anal 48(4):1281–1312

    Article  MathSciNet  Google Scholar 

  20. Jerison DS, Kenig CE (1981) The Neumann problem on Lipschitz domains. Bull Am Math Soc (NS) 4(2):203–207

    Article  MathSciNet  Google Scholar 

  21. Lions J-L, Magenes E (1972) Non-homogeneous boundary value problems and applications, vol I. Springer, New York

    Book  Google Scholar 

  22. Martin V, Jaffré J, Roberts JE (2005) Modeling fractures and barriers as interfaces for flow in porous media. SIAM J Sci Comput 26(5):1667–1691

    Article  MathSciNet  Google Scholar 

  23. Mikelić A, Wheeler MF (2013) Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci 17(3):455–461

    Article  MathSciNet  Google Scholar 

  24. Phillips PJ, Wheeler MF (2007) A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput Geosci 11(2):131–144

    Article  MathSciNet  Google Scholar 

  25. Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp 54(190):483–493

    Article  MathSciNet  Google Scholar 

  26. Showalter RE (2000) Diffusion in poro-elastic media. J Math Anal Appl 251(1):310–340

    Article  MathSciNet  Google Scholar 

  27. Wheeler MF, Xue G, Yotov I (2014) Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput Geosci 18(1):57–75

    Article  MathSciNet  Google Scholar 

  28. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivette Girault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girault, V., Wheeler, M.F., Kumar, K., Singh, G. (2019). Mixed Formulation of a Linearized Lubrication Fracture Model in a Poro-elastic Medium. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics