Skip to main content

Immuno-Oncolytic Virotherapy for Melanoma

  • Chapter
  • First Online:
Melanoma

Abstract

Oncolytic virotherapy is a targeted immunotherapeutic approach to induce tumor cell lysis in vivo, with efficacy in a wide range of cancers, including melanoma. Viruses are carefully selected based on their ability to demonstrate selective tumor cell replication, and viral genomic modifications are used to enhance such replication and create a heightened immune response. Current use of oncolytic viruses (OVs) in melanoma ranges from discovery in the experimental phase to proof of efficacy in clinical trials. With the 2015 approval of Talimogene laherparepvec for the treatment of advanced melanoma, we have added yet another tool to effectively treat those with locally unresectable or in-transit disease. Recently, combination therapy trials with OVs and immune checkpoint inhibitors have shown to have some very promising results in patients with advanced, often metastatic, melanoma. This chapter includes an overview of the history of and making of OVs as well as a detailed summary of current clinical trials in melanoma patients. With new experimental data on oncolytic virotherapy published in ever-increasing numbers, the future of OVs for the treatment of melanoma seems to hold promise as a major component of treatment for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

     Adverse event

BSL:

     Biosafety level

CD:

     Cluster of differentiation

CRAds:

    Conditionally replicative adenoviruses

CTLA:

   Cytotoxic T-lymphocyte antigen

DC:

     Dendritic cell

DR:

     Durable response

FDA:

     FOOD and Drug Administration

GM-CSF:

   Granulocyte monocyte colony-stimulating factor

HMW-MAA:

 High molecular weight tumor-associated antigen

HSV:

     Herpes simplex virus

IFN:

     Interferon

IL:

      Interleukin

irPFS:

    Immune-related progression free survival

IT:

      Intratumoral

MAA:

    Melanoma-associated antigen

MHC:

    Major histocompatibility complex

MMP:

    Matrix metalloprotease

MV:

     Measles virus

NARA:

    Neutralizing anti-reovirus antibodies

NDV:

    Newcastle disease virus

NK:

    Natural killer

OPTiM:

 Oncovex (GM-CSF) Pivotal Trial in Melanoma

ORR:

  Overall response rate

OV:

    Oncolytic virus

PD:

    Programmed death receptor

Pfu:

    Plaque forming unit

PPE:

   Personal protective equipment

PPR:

   Progression prior to response

RECST:

 Response evaluation criteria in solid tumors

TAA:

  Tumor-associated antigen

TGF:

  Transforming growth factor

TNF:

  Tumor necrosis factor

TPV:

  Tanapox virus

Tregs:

   Regulatory T-cells

T-vec:

   Talimogene laherparepvec

VSV:

   Vesicular stomatitis virus

VV:

    Vaccinia virus

Wt:

     Wild type

References

  1. Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther. 2004;11:643–64.

    Article  CAS  PubMed  Google Scholar 

  2. Kelly E, Russell S. History of Oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15:651–9.

    Article  CAS  PubMed  Google Scholar 

  3. Martuza R, Malick A, Markert J, Ruffner K, Coen D. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.

    Article  CAS  PubMed  Google Scholar 

  4. Peters C, Rabkin S. Designing herpes viruses as oncolytics. Mol Ther Oncolytics. 2015;2:15010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with III c and IV melanoma. Ann Surg Oncol. 2010;17:718–30.

    Article  PubMed  Google Scholar 

  6. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107:1373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mastrangelo M, Maguire H, Eisenlohr L, Laughlin C, Monken C, McCue P, Kovatich A, Lattime E. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6:409–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kee D, McArthur G. Immunotherapy of melanoma. Eur J Surg Oncol. 2017;43:594–603.

    Article  CAS  PubMed  Google Scholar 

  9. Chan W, Rahman M, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine. 2013;31:4252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nettelbeck D, Rivera A, Balagué C, Alemany R, Curiel D. Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res. 2002;62:4663–70.

    PubMed  CAS  Google Scholar 

  11. Garg H, Suri P, Gupta J, Talwar G, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016;23(16):49. https://doi.org/10.1186/s12935-016-0326-1.

    Article  CAS  Google Scholar 

  12. Grigg C, Blake Z, Gartrell R, Sacher A, Taback B, Saenger Y. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol. 2016;43:638–46.

    Article  CAS  PubMed  Google Scholar 

  13. Conrad S, El-Aswad M, Kurban E, Jeng D, Tripp B, Nutting C, Eversole R, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. J Exp Clin Cancer Res. 2015;34:19.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deng L, Fan J, Guo M, Huang B. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian tan strain Guang9. Cancer Lett. 2016;372:251–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann P, Panigada M, Soprana E, et al. Pre-clinical development of HIvax: human survivin highly immunogenic vaccines. Hum Vaccin Immunother. 2015;11:1585–95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Varghese S, Rabkin S. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–78.

    Article  CAS  PubMed  Google Scholar 

  17. Hermiston T, Kuhn I. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther. 2002;9:1022–35.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang T, Suryawanshi Y, Woyczesczyk H, Essani K. Targeting melanoma with cancer-killing viruses. Open Virol J. 2017;11:28–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stephenson K, Barra N, Davies E, Ashkar A, Lichty B. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2011;19:238–46.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao H, Janke M, Fournier P, Schirrmacher V. Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Res. 2008;136:75–80.

    Article  CAS  PubMed  Google Scholar 

  21. Bai F, Niu Z, Tian H, Li S, Lv Z, Zhang T, Ren G, Li D. Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunol Lett. 2014;159:36–46.

    Article  CAS  PubMed  Google Scholar 

  22. Carew J, Kooby D, Halterman M, Kim S, Federoff H, Fong Y. A novel approach to cancer therapy using an Oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther. 2001;4:250–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang T, Kordish D, Suryawanshi Y, Eversole R, Kohler S, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing interleukin-2 is capable of inducing the regression of human melanoma tumors in the absence of T cells. Curr Cancer Drug Targets. 2017;17:9.

    Article  CAS  Google Scholar 

  24. Zheng J, Pei D, Mao L, Liu X, Sun F, Zhang B, Liu Y, Liu J, Li W, Han D. Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther. 2009;17:28–36.

    Article  CAS  Google Scholar 

  25. Lee Y, Kim J, Choi K, Choi I, Kim H, Cho S, Cho B, Yun C. Enhanced antitumor effect of Oncolytic adenovirus expressing Interleukin-12 and B7-1 in an Immunocompetent murine model. Clin Cancer Res. 2006;12:5859–68.

    Article  CAS  PubMed  Google Scholar 

  26. Andtbacka R, Kaufman H, Collichio F, et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  Google Scholar 

  27. Liu B, Robinson M, Han Z, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10:292–303.

    Article  CAS  PubMed  Google Scholar 

  28. Jeng D, Rahman MM, McFadden G, Essani K. Tumor necrosis factor inhibitors from poxviruses with an emphasis on Tanapoxvirus-2L protein. Recent Pat DNA Gene Seq. 2011;5:97–103.

    Article  CAS  PubMed  Google Scholar 

  29. Kaufman H, DeRaffele G, Mitcham J, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Investig. 2005;115:1903–12.

    Article  CAS  PubMed  Google Scholar 

  30. Bergmann M, Romirer I, Sachet M, et al. A genetically engineered influenza a virus with ras-dependent oncolytic properties. Cancer Res. 2001;61:8188–93.

    PubMed  CAS  Google Scholar 

  31. Pulido J, Kottke T, Thompson J, et al. Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol. 2012;30:337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martın F, Chowdhury S, Neil S, Phillipps N, Collins M. Envelope-targeted retrovirus vectors transduce melanoma Xenografts but not spleen or liver. Mol Ther. 2002;5:269–74.

    Article  CAS  PubMed  Google Scholar 

  33. Martin F, Neil S, Kupsch J, Maurice M, Cosset FL, Collins M. Retrovirus targeting by tropism restriction to melanoma cells. J Virol. 1999;73:6923–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Hwang T, Moon A, Burke J, et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic Oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther. 2011;19:1913–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park B, Hwang T, Liu T, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.

    Article  CAS  PubMed  Google Scholar 

  36. Galanis E, Markovic S, Suman V, et al. Phase II trial of intravenous Administration of Reolysin® (Reovirus Serotype-3-Dearing strain) in patients with metastatic melanoma. Mol Ther. 2012;20:1998–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Viralytics starts enrollment in phase II CAVATAK melanoma trial. 2011. M2 Pharma.

    Google Scholar 

  38. Primary endpoint achieved in CAVATAK phase 2 melanoma trial. 2013. PR Newswire. http://libproxy.library.wmich.edu/login?url=https://search.proquest.com/docview/1433277955?accountid=15099

  39. Lichty B, Breitbach C, Stojdl D, Bell J. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–67.

    Article  CAS  PubMed  Google Scholar 

  40. Andtbacka R, Ross M, Puzanov I, et al. Patterns of clinical response with Talimogene Laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol. 2016;23:4169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rehman H, Silk A, Kane M, Kaufman H. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4:53. https://doi.org/10.1186/s40425-016-0158-5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Herpes simplex virus. In: World Health Organization. 2017. http://www.who.int/mediacentre/factsheets/fs400/en/. Accessed 7 Sep 2017.

  43. Harrington K, Michielin O, Malvehy J, Pezzani Grüter I, Grove L, Frauchiger A, Dummer R. A practical guide to the handling and administration of talimogene laherparepvec in Europe. Onco Targets Ther. 2017;10:3867–80.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Orloff M. Spotlight on talimogene laherparepvec for the treatment of melanoma lesions in the skin and lymph nodes. Oncolytic Virother. 2016;5:91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gormley C, Agarwala SS. Intralesional combination shows early promise in melanoma. HEM/ONC Today. 2017;18(10):18–9. ProQuest. Web. 4 Sep. 2017

    Google Scholar 

  46. Puzanov I, Milhem M, Andtbacka R, Minor D, Hamid O, Li A, VanderWalde A, Kaufman H. Phase 1 results of a phase 1b/2, multicenter, open-label trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) vs ipi alone in previously untreated, unresected stage IIIB-IV melanoma. J Immunother Cancer. 2013;1:P84.

    Article  PubMed Central  Google Scholar 

  47. Rajani K, Parrish C, Kottke T, et al. Combination therapy with Reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther. 2016;24:166–74.

    Article  CAS  PubMed  Google Scholar 

  48. Webb E, Liu P, Baleeiro R, Lemoine N. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2017. https://doi.org/10.7555/jbr.31.20160168.

  49. Fellner C. Ipilimumab (Yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. PT. 2012;37:503–30.

    Google Scholar 

  50. Sosman J. Addice T-Vec to ipilimumab for advanced melanoma. NEJM J Watch. Oncology and Hematology. 2016.

    Google Scholar 

  51. Engeland C, Grossardt C, Veinalde R, et al. CTLA-4 and PD-L1 checkpoint blockade enhances Oncolytic measles virus therapy. Mol Ther. 2014;22:1949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Christie JD, Byers ER, Essani K. Oncolytic Virotherapy: a brief overview. J Med Microb Diagn. 2016;5:e129. https://doi.org/10.4172/2161-0703.1000e129.

    Article  Google Scholar 

  53. Suryawanshi Y, Zhang T, Essani K. Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol. 2017;34(3):43. https://doi.org/10.1007/s12032-017-0899-0.

    Article  PubMed  Google Scholar 

  54. Thomas C, Ehrhardt A, Kay M. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu Z, Gorman M, McKenzie L, Chai J, Hubert C, Prager B, Fernandez E, Richner J, Zhang R, Shan C, Wang X, Shi P, Diamond M, Rich J, Chheda M. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017;214(10):2843–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahalingam D, Fountzilas C, Moseley J, Noronha N, Tran H, Chakrabarty R, Selvaggi G, Coffey M, Thompson B, Sarantopoulos J. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 2017;79:697–703.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Jellies, Dr. Cecil McIntire, and Susan McIntire for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Essani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woyczesczyk, H., Essani, K. (2018). Immuno-Oncolytic Virotherapy for Melanoma. In: Riker, A. (eds) Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-78310-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78310-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78309-3

  • Online ISBN: 978-3-319-78310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics