Perfection of Technical Characteristics of the Railway Transport System Europe-Caucasus-Asia (TRACECA)

  • George Tumanishvili
  • Tamaz Natriashvili
  • Tengiz Nadiradze
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 155)


The segment of the TRACECA main line passing on the territory of the former SU is made according to Russian standard, which is characterized by the low technical characteristics. Influence of the third body on the wheel and rail damage types, conditions of its formation and destruction are considered in the work taking into account the boundary layers stability and a thermal load of the contact zone. The influence of properties of the third body and degree of its destruction on the character of variation of the friction coefficient (negative, neutral and positive) and wear types (mild, sever and catastrophic) is ascertained. The conditions of destruction of the third body are developed and new ecologically compatible friction modifiers for the wheel and rail steering and tread surfaces are tested in the laboratory conditions. The wheel-sets with the separate modification of the tread and steering surfaces and increased durability of the wheel-set axle and the rail fastening device ensuring the constant rail cant are also developed.


Railway vehicle Friction Wear Wheel Rail Tread and steering surfaces 


  1. 1.
    Magel EE (2011) Rolling contact fatigue: a comprehensive review. Prescribed by ANSI Std. 239-18 298-102 DOT/FA/ORD-11/24, U.S. Department of Transportation, Office of Railroad Policy and Development Washington, DC 20590. 118 pGoogle Scholar
  2. 2.
    Tunna J, Shu X (2006) Regional fast rail project: turnout safety analysis. P-06-019 for Victoria’s Department of Infrastructure. Regional fast rail project. Transportation Technology Center, Inc. A subsidiary of the Association of American Railroads. Pueblo, Colorado USAGoogle Scholar
  3. 3.
    Shust WC, Elkins JA, Kalay S, El-Sibaie M (1997) Wheel-climb derailment tests using AAR track loading vehicle, Association of American Railroads Report R-910Google Scholar
  4. 4.
    Weinstock H (1984) Wheel climb derailment criteria for evaluation of rail vehicle safety. In: Proceedings of ASME Winter Annual Meeting, 84-WA/RT-1, New Orleans, LAGoogle Scholar
  5. 5.
    Thompson DJ, Honk-Steel AD, Jones CJ, Allen PD, Hsu SS, Iwnicki SD (2003) Project A3—railway noise: curve squeal, roughness growth, friction and wear. MMUGoogle Scholar
  6. 6.
    Wu H, Elkins J (1999) Investigation of wheel flange climb derailment criteria, Association of American Railroads report R-931Google Scholar
  7. 7.
    Cristol-Bulth’e AL, Desplanques Y, Degallaix G (2007) Coupling between friction physical mechanisms and transient thermal phenomena involved in pad–disc contact during railway braking. Laboratoire de Mґecanique de Lille (CNRS UMR 8107), Ecole Centrale de Lille, BP 48, F-59651 Villeneuve d’Ascq Cedex, FranceGoogle Scholar
  8. 8.
    Elkins J, Wu H (2000) New criteria for flange climb derailment, IEEE/ASME joint railroad. Conference, Newark, NJGoogle Scholar
  9. 9.
    Rhee SK, Jacko MG, Tsang PH (1991) The role of friction film in friction, wear and noise of automotive brakes. Wear 146(1):89–97CrossRefGoogle Scholar
  10. 10.
    Gubenko S, Sladkowski A (2005) The influence of the contact stress on the structural changes of railway wheel stell. In: A. Sladkowski (ed) Rail vehicle dynamics and associated problems. Gliwice, p 135–160Google Scholar
  11. 11.
    Vasic G, Franklin FJ, Kapoor A (2003) Prepared for the railway safety and standards board. University of Sheffield. report: RRUK/A2/1Google Scholar
  12. 12.
    Mитpoxин AH (2008) Ктo и пoчeмy « шьёт » кoлeю шиpинoй 1512 мм? Лoкoмoтив. No. 4. pp 5–8. [In Russian: Mitrokhin AN (2008) Who and why “sews” a gauge width of 1512 mm? Locomotive]Google Scholar
  13. 13.
    Дpoздoв ЮH, Пaвлoв BГ, Пyчкoв BH (1986) Tpeниe и изнoc в экcтpeмaльныx ycлoвияx. Mocквa: Maшинocтpoeниe. 224 p. [In Russian: Drozdov YN, Pavlov VG, Puchkov VN (1986) Friction and wear in the extreme conditions. Moscow. Mashinostroenie]Google Scholar
  14. 14.
    Olofsson U, Lewis R (2006) Tribology of the wheel—rail contact. In: Simon I (ed) Handbook of railway vehicle dynamics. Manchester, Taylor & Francis Group, LLC, 526 pCrossRefGoogle Scholar
  15. 15.
    Arias-Cuevas O, Li Z, Lewis R, Gallardo-Hernandez EA (2010) Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts. Wear 268(3–4):543–551CrossRefGoogle Scholar
  16. 16.
    Hoвикoв BB, Ивaнoв CГ, Шaвшишвили ИД (2000) Peмoнтныe пpoфили пoвepxнocти кaтaния кoлeca. Пyть и пyтeвoe xoзяйcтвo. No. 1. pp 56–57. [In Russian: Novikov VV, Ivanov SG, Shavishishvili ID (2000) Repair profiles for the tread surface of the wheel. Track and railway equipment]Google Scholar
  17. 17.
    Bolton PJ, Clayton P (1984) Rolling-sliding wear damage in rail and tyre steels. Wear 93:145–165CrossRefGoogle Scholar
  18. 18.
    Lewis R, Dwyer-Joyce RS, Olofsson U, Hallam RL (2004) Wheel material wear mechanisms and transitions. In: 14th international wheelset congress, Orlando, USAGoogle Scholar
  19. 19.
    Lewis R, Dwyer-Joyce RS, Olofsson U, Pombo J, Ambrósio J, Pereira M, Ariaudo C, Kuka N (2010) Mapping railway wheel material wear mechanisms and transitions. In: Proceedings of ImechE, vol 224. Part F: J. Rail and rapid transit, JRRT328VCrossRefGoogle Scholar
  20. 20.
    Кoнoнoв BE (2005) Пyти cнижeния изнoca гpeбнeй кoлёcныx пap лoкoмoтивoв. Лoкoмoтив. No. 2. pp 34–36. [In Russian: Kononov VE (2005) The ways of the wear decrease of wheel-set flanges of locomotives. Locomotive]Google Scholar
  21. 21.
    Ликpaтoв ЮH (2004) Eздим нa гpeбняx кoлёc. Жeлeзнoдopoжный тpaнcпopт. No. 12. pp 52–54. [In Russian: Likratov YN (2004) We ride on the wheel flanges. Railway transport]Google Scholar
  22. 22.
    Stone DH, Sawlay K, Kelly D, Shust W (1999) Wheel/rail materials and interaction: North American heavy haul practices. IHHA’99 STS—Conference, Session 3. Moscow, pp 155–168Google Scholar
  23. 23.
    Lundmark J, Hoglund E, Prakash B (2006) Running-in behavior of rail and wheel contacting surfaces. In: International conference on tribology, Parma, Italy, pp 20–22Google Scholar
  24. 24.
    Lewis R, Olofsson U (2004) Mapping rail wear regimes and transitions. Wear 257(7–8):721–729CrossRefGoogle Scholar
  25. 25.
    Olofsson U, Telliskivi T (2003) Wear, plastic deformation and friction of two rail steels a full-scale test and a laboratory study. Wear 254:80–93CrossRefGoogle Scholar
  26. 26.
    Müller B, Jansen E, de Beer F (2003) UIC curve squeal project WP3. Swiss Federal Railways, Rail Environmental CenterGoogle Scholar
  27. 27.
    Бpюнчyкoв ГИ, Cyxoв AB, Paзyмoв AC, Tapaкaнoв BЮ (2012) Peзyльтaты иcпытaний бaндaжeй пoвышeннoй изнococтoйкocти. Бюллeтeнь BHИИЖT. No. 2. pp 34–37. [In Russian: Brunchukov GI, Sukhov AV, Razumov AS, Tarkanov VY (2012) The results of tests of wheels with increased wear resistance. Bull VNIIJT]Google Scholar
  28. 28.
    Бyйнocoв AП, Клинcкий BC (1992) Oб изнoce бaндaжeй лoкoмoтивныx кoлёc. Жeлeзнoдopoжный тpaнcпopт. No. 5. pp 45–46. [In Russian: Buinosov AP, Klinski VC (1992) About wear of the electric locomotive wheel treads. Railway transport]Google Scholar
  29. 29.
    Лыcюк BC (2004) O пpичинax cxoдa вaгoнoв и изнoca peльcoв в кpивыx. Жeлeзнoдopoжный тpaнcпopт. No. 12. pp 50–52. [In Russian: Lysiuk VS (2004) On the causes of derailment and wear of rails in curves. Railway transport]Google Scholar
  30. 30.
    Sowlay KJ, Clark SL (1999) Engineering and economic implications of hollow worn wheels on wheel and rail asset life and fuel consumption. In: IHHA’99 STS-conference, Session 4. Moscow, pp 299–305Google Scholar
  31. 31.
    Hикoлaeв HИ (1962) Динaмикa лoкoмoтивoв. Mocквa: Tpaнcжeлдopиздaт. 317 p. [In Russian: Nikolaev NI (1962) Dynamics of locomotives. Transzheldorizdat, Moscow]Google Scholar
  32. 32.
    Кoгaeв BП, Дpoздoв ЮH (1991) Пpoчнocть и изнococтoйкocть дeтaлeй мaшин. Mocквa: Bыcшaя шкoлa. 320 p. [In Russian: Kogaev VP, Drozdov YN (1991) Strength and durability of machine parts. Higher school, Moscow]Google Scholar
  33. 33.
    Swenson CA (1999) Locomotive radial steering bogie experience in heavy haul service. In: IHHA’99, pp 79–86Google Scholar
  34. 34.
    Yang C, Li F, Huang Y, Wang K, He B (2012) Comparative study on wheel-rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie., Chengdu, pp 1–8Google Scholar
  35. 35.
    Grassie SL (2009) Review paper 1. Rail corrugation: characteristics, causes, and treatments. In: Proceedings of IMechE, vol 223. Part F: J. Rail and rapid transit. 16 pCrossRefGoogle Scholar
  36. 36.
    Colette C, Horodinca M, Preumont A (2008) Rotational vibration absorber for the mitigation of rail rutting corrugation. Veh Syst Dynam 47(6):641–659CrossRefGoogle Scholar
  37. 37.
    Hertz H (1882) Uberdie beruhung fester, elastischer Korper. Journal fur die und angewandte Mathematik 92:174 pGoogle Scholar
  38. 38.
    Kalker JJ (1990) Tree-dimensional elastic bodies in rolling contact. Kluwer academic Publishers, DordrechtCrossRefGoogle Scholar
  39. 39.
    Ohyama T (1991) Tribological studies on adhesion phenomena between wheel and rail at high speeds. Wear 114:263–275Google Scholar
  40. 40.
    Cassidy PD (2001) Wrought materials may prolong wheel life. Int Railw J 12:40–41Google Scholar
  41. 41.
    Courant R, Hilbert D (2004) Methods of mathematical physics, vol 1. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, p 560zbMATHGoogle Scholar
  42. 42.
    Щeдpoв BC (1955) Teмпepaтypa нa cкoльзящeм кoнтaктe. In: Tpeниe и изнoc в мaшинax. Mocквa: Издaтeльcтвo AH CCCP. No. 10. pp 155–296. [In Russian: Schedrov VS (1955) Temperature on the sliding contact. In: Friction and wear in machines. Academy of Sciences of SU, Moscow]Google Scholar
  43. 43.
    Лыкoв AB (1967) Teopия тeплoпpoвoднocти. Mocквa: Bыcшaя шкoлa. 441 p. [In Russian: Lykov AV (1967) Theory of heat conduction. Higher School, Moscow]Google Scholar
  44. 44.
    Pыкaлин HH (1967) Pacчёт тeплoвыx пpoцeccoв. Mocквa: Maшгиз. 250 p. [In Russian: Rykalin NN (1967) Calculations of thermal processes. Mashgiz, Moscow]Google Scholar
  45. 45.
    Leach EF, Kelly BW (1065) Temperature, the key of lubricant capacity. Trans ASLE 9(9):271–285Google Scholar
  46. 46.
    Дpoздoв ЮH (1971) Утoчнeнный мeтoд pacчётa нa зaдиp пap тpeния в тяжeлoнaгpyжeнныx мexaнизмax. Becтник мaшинocтpoeния. No. 4. pp 25–39. [Drozdov YN (1971) The more precise calculating method on scuffing of the friction pear in heavy loaded mechanisms. Vestnik mashinostroenia]Google Scholar
  47. 47.
    Lewis R, Dwyer-Joyce RS (2004) Wear mechanisms and transitions in railway wheel steels. Proc Inst Mech Eng Part J J Eng Tribol 218(6):467–478CrossRefGoogle Scholar
  48. 48.
    Ghanbarzadeh A, Wilson M, Morina A, Dowson D, Neville A (2014) Development of a new mechano-chemical model in boundary lubrication, Leeds/Lyon conferenceGoogle Scholar
  49. 49.
    Wang W, Liu XJ, Liu K (2012) FEM analysis on multibody interaction process in three body friction geometry with rough surface. Tribology 6(2):59–66Google Scholar
  50. 50.
    Dwyer-Joyce RS, Lewis R, Gao N, Grieve DG (2003) Wear and fatigue of railway track caused by contamination, sanding and surface damage. In: 6th International conference on contact mechanics and wear of rail/wheel systems (CM2003) in Gothenburg, SwedenGoogle Scholar
  51. 51.
    Kalousek J, Magel E (1997) Modifying and managing friction. In: Railway track & structures, pp 5–6Google Scholar
  52. 52.
    Elkins J, Wu H (2000) New criteria for flange climb derailment. In: IEEE/ASME joint railroad conference, Newark, NJGoogle Scholar
  53. 53.
    Tomala A, Karpinskab A, Wernera WSM, Olverb A, Störi H (2010) Tribological properties of additives for water-based lubricants. Wear 269:804–810CrossRefGoogle Scholar
  54. 54.
    Wang J, Li T, Peng J, Chen Z (2000) Water lubrication of mechanical frictional pairs—current research and future development trends. In: Su DZ (ed) Proceedings of the international conference on gearing, transmissions, and mechanical systems, pp 761–768Google Scholar
  55. 55.
    Meлeнтьeв ЛП (1992) Bзaимoдeйcтвиe кoлёc и peльcoв и иx изнoc. Пyть и пyтeвoe xoзяйcтвo. No. 5, pp 6–15. [In Russian: Melentev LP (1992) Interaction of wheels and rails and their wear. Track and railway equipment]Google Scholar
  56. 56.
    Mинин CИ (1991) Пpичины интeнcивнoгo изнoca кoлёcныx пap и peльcoв. Жeлeзнoдopoжный тpaнcпopт. No. 1. pp 47–50. [In Russian: Minin SI (1991) Causes of intense wear of wheel sets and rails. Railway transport]Google Scholar
  57. 57.
    Epмaкoв BM, Пeвзнep BO (2002) O cxoдax пopoжныx вaгoнoв. Жeлeзнoдopoжный тpaнcпopт. No. 3. pp 29–33. [In Russian: Ermakov VM, Pevzner VO (2002) About derailment of empty cars. Railway transport]Google Scholar
  58. 58.
    Ahmed NS, Nassar AM (2013) Lubrication and lubricants. Tribol Fundam Adv, pp 55–76Google Scholar
  59. 59.
    Yifei M, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457, 26.
  60. 60.
    Rudnick LR (2010) Lubricant additives: chemistry and applications. CRC PressGoogle Scholar
  61. 61.
    Hou K, Kalousek J, Magel E (1997) Rheological model of solid layer in rolling contact. Wear 211:134–140CrossRefGoogle Scholar
  62. 62.
    Гpyбин AИ (1949) Ocнoвы гидpoдинaмичecкoй тeopии cмaзки тяжeлo нaгpyжeнныx цилиндpичecкиx пoвepxнocтeй. In: Иccлeдoвaниe кoнтaктa дeтaлeй мaшин. ЦHИИTMAШ. No. 30. 219p. [In Russian: Grubin AI (1949) Fundamentals of the hydrodynamic theory of lubrication of heavily stressed cylindrical surfaces. In: Research into the contact of machine parts]Google Scholar
  63. 63.
    Пeтpyceвич AИ, Дaнилoв BД, Фoмичeв BT (1975) Иccлeдoвaниe влияния cкopocти cкoльжeния нa тoлщинy мacлянoй плeнки в кoнтaктe цилиндpичecкиx poликoв. In: Иccлeдoвaния пo тpибoтexникe. Mocквa: Hayчнo-иccлeдoвaтeльcкий инcтитyт инфopмaции пo мaшинocтpoeнию. pp 158–164. [In Russian: Petrusevich AI, Danilov VD, Fomichev VT (1975) Research into influence of sliding velocity on the oil film thickness in the contact of cylindrical rollers. In: Researches into the tribotechnics. Research Institute of Information on Mechanical Engineering, Moscow]Google Scholar
  64. 64.
    Дpoздoв ЮH, Tyмaнишвили ГИ (1978) Toлщинa cмaзoчнoгo cлoя пepeд зaeдaниeм тpyщиxcя тeл. Becтник мaшинocтpoeния. No. 2. pp 8–10. [In Russian: Drozdov YN, Tumanishvili GI (1978) The lubricant film thickness before scuffing. Vestnik mashinostroenia]Google Scholar
  65. 65.
    Eadie DT, Kalousek J, Chiddik KC (2002) The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena. Wear 253:185–192CrossRefGoogle Scholar
  66. 66.
    Eadie DT, Bovey ED, Kalousek JOE (2002) The role of friction control in effective management of the wheel/rail interface. Presented at the railway technology conference at railtex, Birmingham, UKGoogle Scholar
  67. 67.
    Vidaud M, Zwanenburg WJ (2009) Current situation on rolling contact fatigue—a rail wear phenomena. In: Swiss transport research conferenceGoogle Scholar
  68. 68.
    Fries RH, D’avila CG (1985) Analytical methods for wheel and rail wear prediction. In: Proceedings of the ninth IAVSD symposium, LinkopingGoogle Scholar
  69. 69.
    Li S, Li Z, Núñez A, Dollevoet R (2017) New insights into the short pitch corrugation enigma based on 3D-FE coupled dynamic vehicle-track modeling of frictional rolling contact. Appl Sci 7(8):807, 22 pGoogle Scholar
  70. 70.
    Denape J (2014) Third body concept and wear particle behavior in dray friction sliding conditions. In: Tribological aspects in modern aircraft industry. Trans Tech Publications, pp 1–12CrossRefGoogle Scholar
  71. 71.
    Meng HC, Ludema KC (1995). Wear models and predictive equations: their form and content. Wear, 181–183 (Part 2): pp 443–457Google Scholar
  72. 72.
    Kalker JJ (1991) Simulation of the development of a railway wheel profile through wear. Wear 150:355–365CrossRefGoogle Scholar
  73. 73.
    Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988CrossRefGoogle Scholar
  74. 74.
    Archard JF, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc Lond A 236(1206):397–410CrossRefGoogle Scholar
  75. 75.
    Gohar R (2001) Elastohydrodynamics, 2nd ed. World ScientificGoogle Scholar
  76. 76.
    Hamrock BJ, Dowson D (1986). Ball bearing lubrication: the elastohydrodynamics of elliptical contacts. Wiley, NJGoogle Scholar
  77. 77.
    Chang HS, Orcutt FK (1965) A correlation between the theoretical and experimental results on the elasto-hydrodynamic lubrication of rolling and sliding contact. Pross I Mech E Lond 180, 158 (Pt. 3B)Google Scholar
  78. 78.
    Tumanishvili G, Nadiradze T, Tumanishvili I (2014) Improving of operating ability of wheels and rail tracks. Transp Prob 9(3):99–105Google Scholar
  79. 79.
    Dyson D, Higginson GR (1961) New roller-bearing lubrication formula. Eng Lond 192(4972):158–159Google Scholar
  80. 80.
    Murch U (1975) Analysis of the input zone of elasto-hydrodynamic contact with allowance for thermal effects. Problems of friction and wear, № 2, pp 76–81Google Scholar
  81. 81.
    Кoдниp ДC (1976) Кoнтaктнaя гидpoдинaмикa cмaзки дeтaлeй мaшин. Mocквa: Maшинocтpoeниe. 303 p. [In Russian: Kodnir DS (1976) Contact hydrodynamics of lubrication of machine parts. Mechanical engineering, Moscow]Google Scholar
  82. 82.
    Дpoздoв ЮH, Tyмaнишвили ГИ (1982) Pacчёт нa зaeдaниe пo пpeдeльнoй тoлщинe cмaзoчнoгo cлoя. Becтник мaшинocтpoeния. No. 4. pp 19–29. [In Russian: Drozdov YN, Tumanishvili GI (1982) Calculation on scuffing by the extreme thickness of the lubricating layer. Vestnik mashinostroenia]Google Scholar
  83. 83.
    Knothe K, Liebelt S (1995) Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 189(1–2):91–99CrossRefGoogle Scholar
  84. 84.
    Blok H (1937) Les temperatures de surface dans conditions de graissage sous extreme pression. Congr Mondial du petrole Paris 3:471–486Google Scholar
  85. 85.
    Дpoздoв ЮH, Apчeгoв BГ, Cмиpнoв BИ (1981) Пpoтивoзaдиpнaя cтoйкocть тpyщиxcя тeл. Mocквa: Hayкa. 140p. [In Russian: Drozdov YN, Archegov VG, Smirnov VI (1981) Scuffing resistance of friction bodies. Nauka, Moscow]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • George Tumanishvili
    • 1
  • Tamaz Natriashvili
    • 1
  • Tengiz Nadiradze
    • 1
  1. 1.Institute of Machine MechanicsTbilisiGeorgia

Personalised recommendations