Skip to main content

Recent Advances in Virus Elimination and Tissue Culture for Quality Potato Seed Production

  • Chapter
  • First Online:
Book cover Biotechnologies of Crop Improvement, Volume 1

Abstract

High-yielding varieties and quality planting material are two important ingredients for harnessing benefits of modern production technologies in vegetatively propagated crops like potato (Solanum tuberosum L.). Low rate of multiplication, high seed rate, progressive accumulation of degenerative viral diseases, perishability and bulkiness are inherent problems associated with potato seed which result in non-availability of adequate quantities of quality planting material at affordable price. Inadequacy of quality planting material at affordable cost and high seed rate are often reflected in 40–50% cost of cultivation on potato seed alone. To circumvent some of these problems, several modifications such as tuber indexing for virus freedom, seed multiplication stages and seed certification standards have been developed and integrated with conventional potato seed production programmes. The advent of tissue culture, in which virus-free plants can be produced through meristem culture, maintained indefinitely under controlled conditions and multiplied in artificial media under sterile conditions in the laboratory throughout the year irrespective of growing season, has revolutionized seed production in potato world over. Recent developments in automation for microtuber and minituber production have further enhanced adaptability of these techniques in potato seed production. In addition to quality assurance through meristem culture, the micropropagation, microtuber and minituber production techniques ensure enhanced multiplication rate in initial stages of seed production. All these techniques with their possible integration in potato seed production are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS (1994) Production and performance of minitubers. Euphytica 75:163–172

    Article  Google Scholar 

  • Akita M, Ohta Y (1998) A simple method for mass propagation of potato (Solanum tuberosum L) using a bioreactor without forced aeration. Plant Cell Rep 18:284–287

    Article  CAS  Google Scholar 

  • Akita M, Takayama S (1994) Induction and development of potato tubers in a jar fermenter. Plant Cell Tissue Organ Cult 36:177–182

    Article  Google Scholar 

  • Bajaj YPS (1987) Biotechnology and 21st century potato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: potato, vol 3. Springer, Berlin, pp 3–22

    Google Scholar 

  • Bernardy MG, Jacoli GG, Ragetli HWJ (1987) Rapid detection of potato spindle tuber viroid (PSTV) by dot blot hybridization. J Phytopathol 118:171–180

    Article  Google Scholar 

  • Broertjes C, Van Harten AM (1978) Applications of mutation breeding methods in the improvement of vegetatively propagated crops. Elsevier Scientific Publishing Company, Amsterdam. 351p

    Google Scholar 

  • Buckseth T, Sharma AK et al (2016) Methods of pre-basic seed potato production with special reference to aeroponics – a review. Sci Hortic 204:79–87

    Article  Google Scholar 

  • Burrows ME, Zitter TA (2005) Virus problems of potatoes. Department of Plant Pathology, USDA-ARS, Cornell University, Ithaca. http://www.vegetablemdonline.ppath.cornell.edu/NewsArticles/Potato_Virus.htm

    Google Scholar 

  • Cassells AC (1987) In vitro induction of virus-free potatoes by chemotherapy. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: potato, vol 3. Springer, Berlin, pp 40–50

    Google Scholar 

  • Chindi AG, Giorgi Atsede W, Lemma S et al (2014) Rapid multiplication techniques (RMTs): a tool for the production of quality seed potato (Solanum tuberosum L). Asia J Crop Sci. ISSN 1994-7879. https://doi.org/10.3923/ajcs2014

  • CIP (1980) Strategy for virus management in potato. In: Report of the planning conference on the strategy for virus management in potatoes II. International Potato Center, Lima, 21–25 Apr 1980

    Google Scholar 

  • Coleman WK, Donnelley DJ, Coleman SE (2001) Potato microtubers as research tools: a review. Am J Potato Res 78:47–55

    Article  CAS  Google Scholar 

  • Conrad PL (1991) Potato virus S free plants obtained using antiviral compounds and nodal segment culture of potato. Potato J 68:507–513

    Article  Google Scholar 

  • Donnelly DJ, Coleman WK, Coleman SE (2003) Potato microtuber production and performance: a review. Am J Potato Res 80:103–115

    Article  Google Scholar 

  • El-Amin SM, Valkonen JPT, Bremmer K et al (1994) Elimination of viruses and hypersensitivity of potato virus Y (PVY) in an important Sudanese potato stock (Zalinge). Am J Potato Res 71:267–272

    Article  Google Scholar 

  • Emami D, Meybodi J, Mozafari N et al (2011) Application of electrotherapy for the elimination of potato potyviruses. J Agric Sci Tech 13:921–927

    Google Scholar 

  • Estrada R, Tovar P, Dodds JH (1986) Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Organ Cult 7:3–10

    Article  Google Scholar 

  • Faccioli G, Colombarini A (1996) Correlation of potato virus S and virus M contents of potato meristem tips with the percentage of virus-free plantlets produced in vitro. Potato Res 39:129–140

    Article  CAS  Google Scholar 

  • Faccioli G, Zoffoli R (1998) Fast eradication of potato virus X and potato virus S from virus infected potato stem cutting by chemotherapy. Phytopathol Mediterr 37:9–12

    CAS  Google Scholar 

  • FAO (2017) FAOSTAT statistics database. www.fao.org/faostat/en/#data/QC

  • Farrell CJ, Martin MW, Thomas PE (1982) Producing virus-tested free potatoes by thermotherapy and meristem culture. Potato Res 21:57–62

    Google Scholar 

  • Gable BV, Melik-Sarkisov OS, Tsoglin LN et al (1990) Hydroponic installation for cultivation of seed minitubers of potato. Fiziol Rast 38:1032–1035

    Google Scholar 

  • Hansen AJ (1988) Chemotherapy of plant virus infections. In: Kurstak E et al (eds) Applied virology research, vol 1. Plenum Medical Book Company, New York, pp 285–299

    Google Scholar 

  • Hao Z, Ouyang F, Geng Y, Deng X, Zanmin Hu, Chen Z (1998) Propagation of potato tubers in a nutrient mist bioreactor. Biotechnol Tech 12 (8):641–644

    Google Scholar 

  • Hedge V, Garg ID, Sarkar D et al (1999) Amenability of Indian potato cultivars to virus elimination through meristem culture. J Indian Potato Assoc 26:93–98

    Google Scholar 

  • Hoque MI, Mila NB, Khan MDS et al (1996) Shoot regeneration and in vitro microtuber formation in potato (Solanum tuberosum L). Bangladesh J Bot 25:87–93

    Google Scholar 

  • Hoverkort AJ, van der Zaag DE (1989) Innovative techniques in seed potato production in the Netherlands, CABO-Verslag No 124. Center for Agrobiological Research, Wageningen. 125p

    Google Scholar 

  • Jones MGK (1994) In vitro culture of potato. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 363–378

    Google Scholar 

  • Kawakami J, Iwama K, Hasegawa T et al (2003) Growth and yield of potato plants grown from microtubers in field. Am J Potato Res 80:371–378

    Article  Google Scholar 

  • Kefi S, Pavlista AD, Read PE et al (2000) Comparison of thidiazuron and two nitroguanidines to kinetin on potato microtuberization in vitro under short and long days. Plant Growth Regul 19:429–436

    Article  CAS  Google Scholar 

  • Khurana SMP, Sane A (1998) Apical meristem culture – a tool for virus elimination. In: Khurana SMP et al (eds) Comprehensive potato biotechnology. Malhotra Publishing House, New Delhi, pp 207–232

    Google Scholar 

  • Khurana SMP, Singh MN (1988) Yield loss potential of potato viruses X and Y in Indian potatoes. J Indian Potato Assoc 15:27–29

    Google Scholar 

  • Khuri S, Moorby J (1995) Nodal segments or microtubers as explants for in vitro microtuber production of potato. Plant Cell Tissue Organ Cult 45:215–222

    Article  Google Scholar 

  • Klein RE, Livingston CH (1982) Eradication of potato virus X from potato by ribavirin treatment of cultivated potato shoots tips. Am J Potato Res 59:359–365

    Article  CAS  Google Scholar 

  • Koda Y, Kikuta Y, Tazaki H (1991) Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30:1435–1438

    Article  CAS  Google Scholar 

  • Kumar D, Singh V, Singh RP et al (2007) Performance of in vitro plantlets for production of minitubers in vector free environment. Potato J 34:131–132

    Article  Google Scholar 

  • Kumar D, Kumar N, Garg ID (2012) A review paper on diagnostics of potato viruses international. J Curr Res 4(12):430–437

    Google Scholar 

  • Kwiatkowski S, Martin MW, Thomas PE (1985) The pacific northwest potato clonal repository. Am J Potato Res 62:433

    Google Scholar 

  • Leclerc Y, Donnelly DJ, Coleman WK (1994) Microtuber dormancy in three potato cultivars. Am J Potato Res 72:215–223

    Article  Google Scholar 

  • Lommen WJM (1995) Basic studies on the production and performance of potato minitubers. Doctoral Thesis, Wageningen Agril. University, Wageningen, 181p

    Google Scholar 

  • Lozoya-Saldana H, Madrigal-Vargas A (1985) Kinetin thermotherapy and tissue culture to eliminate potato virus (PVX) in potato. Am J Potato Res 62:339–345

    Article  CAS  Google Scholar 

  • Lozoya-Saldana H, Merlin-Lara O (1984) Thermotherapy and tissue culture for elimination of potato virus X (PVX) in Mexican potato cultivars resistant to late blight. Am J Potato Res 61:735–740

    Article  Google Scholar 

  • Lozoya-Saldana H, Abello JF, Garcia RG (1996) Electrotherapy and shoot tip culture eliminate potato virus X in potatoes. Am J Potato Res 73:149–154

    Article  Google Scholar 

  • Martin RR, Postman JD (1999) Phytosanitary aspects of plant germplasm conservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis Limited, London, pp 63–82

    Google Scholar 

  • Mellor FC, Stace-Smith R (1987) Virus-free potatoes through meristem culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: potato, vol 3. Springer, Berlin, pp 30–39

    Google Scholar 

  • Millam S, Sharma SK (2007) Soil-free techniques. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam. 822p

    Google Scholar 

  • Mink GI, Wample R, Howell WE (1998) Heat treatment of perennial plants to eliminate phytoplasmas viruses and viroids while maintaining plant survival. In: Hadidi A et al (eds) Plant virus disease control. APS Press, Minnesota, pp 332–345

    Google Scholar 

  • Momena K, Adeeba R, Mehraj H et al (2014) In vitro microtuberization of potato (Solanum Tuberosum L) cultivar through sucrose and growth regulator. J Biosci Agric Res 2(02):76–82

    Google Scholar 

  • Morel G, Martin C (1952) Guerison de dahlias atteints d’une maladies a virus. C R Acad Sci Paris 235:1324–1325

    PubMed  CAS  Google Scholar 

  • Morel G, Martin C (1955) Guerison de pommes de terre atteints de maladies a virus. C R Acad Agric Fr 119:877–878

    Google Scholar 

  • Mozafari J, Pazhouhandeh M (2000) Biotechnology for development of the first Iranian in vitro gene-bank of virus-free potato germplasm. Bull Biotechnol Comm 3:166–173

    Google Scholar 

  • Muro J, Diaz V, Goni JL et al (1997) Comparison of hydroponic culture and culture in a peat/sand mixture and the influence of nutrient solution and plant density on seed potato yields. Potato Res 40:431–438

    Article  Google Scholar 

  • Naik PS (2005) Achieving self-sufficiency in quality seed production in roots and tuber crops with special reference to potato. In: Chadha KL et al (eds) Crop improvement and production technology of horticultural crops, vol I. The Horticultural Society of India, New Delhi, pp 243–255

    Google Scholar 

  • Naik PS, Karihaloo JL (2007) Micropropagation for production of quality potato seed in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), New Delhi. 54p

    Google Scholar 

  • Naik PS, Khurana SMP (2003) Micropropagation in potato seed production: need to revise seed certification standards. J Indian Potato Assoc 30:123–132

    Google Scholar 

  • Naik PS, Sarkar D (1997) Influence of light-induced greening on storage of potato microtubers. Biol Plant 39:31–34

    Article  Google Scholar 

  • Naik PS, Sarkar D (2000) In vitro approaches to propagation and conservation of genetic resources in potato. In: Chadha KL et al (eds) Biotechnology in horticultural and plantation crops. Malhotra Publishing House, New Delhi, pp 369–406

    Google Scholar 

  • Naik PS, Sarkar D (2001) Microtubers: innovative propagules for virus-free potato seed production. In: Nagarjan S, Singh DP (eds) Role of resistance in intensive agriculture. Kalyani Publishers, New Delhi, pp 12–28

    Google Scholar 

  • Naik PS, Chakrabarti SK, Sarkar D et al (2000) Potato biotechnology: Indian perspective. In: Khurana SMP et al (eds) Potato global research and development, vol I. Indian Potato Association, Shimla, pp 194–211

    Google Scholar 

  • Naik PS, Sarkar D, Gaur PC (2001) Potato. In: Parthasarathy VA et al (eds) Biotechnology of horticultural crops. Naya Prakash Publishers, Kolkata, pp 1–50

    Google Scholar 

  • Nyende AB, Schittenhelm S, Mix-Wagner G (2005) Yield and canopy development of field grown potato plants derived from synthetic seed. Eur J Agron 22:175–184

    Article  Google Scholar 

  • Otazu V (2010) Manual on quality seed potato production using aeroponics. International Potato Cenre (CIP), Lima. 44p

    Book  Google Scholar 

  • Paet CN, Zamora AB (1991) In vitro tuberization in potato (Solanum tuberosum L) using different protocols and storage of tuberlets. Philipp Agric 74:59–70

    Google Scholar 

  • Pandey SK (2006) Potato seed production in India: strategies and constraints. In: Abstracts of the national symposium on improving input use efficiency in horticulture. IIHR, Bangalore, 9–11Aug 2006

    Google Scholar 

  • Pandey KK, Singh BP (2014) Effect of Bower system on minituber yield of different varieties in aeroponic system. In: Abstracts of the national seminar on emerging problems of potato, Indian Potato Association CPRI, Shimla, 2 Nov 2014

    Google Scholar 

  • Pandey KK, Sharma AK, Singh BP (2014) Effect of different packing material on periodical storage behaviour of aeroponic minituber of important varieties. In: Abstracts of the national seminar on emerging problems of potato, Indian Potato Association CPRI, Shimla, 2 Nov 2014

    Google Scholar 

  • Pazhouhandeh M (2001) Establishment of in vitro Gene-bank for virus-free potato germplasm. MSc Thesis, Tarbiat Modarres University, 185p

    Google Scholar 

  • Pazhouhandeh M, Mozafari J, Alizadeh A (2002) Electrotherapy a new technique for virus eradication from plants. In: Proceedings of the 15th Iranian plant protection congress, Razi University of Kermanshah, 2002

    Google Scholar 

  • Pérez-Alonso N, Jiménez E, De Feria M et al (2007) Effect of inoculum density and immersion time on the production of potato microtubers in temporary immersion systems and field studies. Biot Veg 7:149–154

    Google Scholar 

  • Piao XC, Chakrabarty D, Hahn EJ et al (2003) A simple method for mass production of potato microtubers using a bioreactor system. Curr Sci 84:1129–1132

    Google Scholar 

  • Pruski KT, Astatkie P, Duplessis T et al (2003) Use of jasmonate for conditioning of potato plantlets and microtubers in greenhouse production of minitubers. Am J Potato Res 80(3):183–193

    Article  CAS  Google Scholar 

  • Pushkarnath (1967) Seed potato production in the sub-tropical plains of India. Am J Potato Res 44:429–441

    Article  Google Scholar 

  • Querci M, Salazar LF (1998) Molecular probes for detection of viruses/viroid in potato. In: Khurana SMP et al (eds) Comprehensive potato biotechnology. Malhotra Publication House, New Delhi, pp 187–206

    Google Scholar 

  • Rajapakse DP, Imai T, Ishige T (1991) Analysis of potato microtuber proteins by sodium dodecylsulfatepolyacrylamide gel electrophoresis. Potato Res 34:285–293

    Article  CAS  Google Scholar 

  • Ranalli P (1997) Innovative methods in seed tuber multiplication programmes. Potato Res 40:439–453

    Article  Google Scholar 

  • Romanov GA, Aksenova NP, Konstantinova TN (2000) Effect of indole −3-acetic acid and kinetin on tuberization parameters of different cultivars and lines of potato in vitro. Plant Growth Reg 32:245–251

    Article  CAS  Google Scholar 

  • Salazar LF (1996) Potato viruses and their control. International Potato Centre, Lima, p 214

    Google Scholar 

  • Sanchez GE, Slack SA, Dodds JH (1991) Response of selected Solanum species to virus eradication therapy. Am J Potato Res 68:299–315

    Article  Google Scholar 

  • Sarkar D, Naik PS (1998) Effect of inorganic nitrogen nutrition on cytokinin-induced potato microtuber production in vitro. Potato Res 41:211–217

    Article  CAS  Google Scholar 

  • Sarkar D, Naik PS (2000) Phloroglucinol enhances growth and rate of axillary shoot proliferation in potato shoot tip cultures in vitro. Plant Cell Tissue Organ Cult 60(2):139–149

    Article  CAS  Google Scholar 

  • Sarkar D, Pandey SK (2011) Potato. In: Singh HP et al (eds) Advance horticulture biotechnology — regeneration systems, vegetables ornamentals and tuber crops, vol II. Westville Publishing House, New Delhi, pp 442–458

    Google Scholar 

  • Sawyer RL (1979) Annual report. International Potato Centre, Lima. 122p

    Google Scholar 

  • Scott GJ, Best R, Bokanga M (2000) Roots and tubers in the global food system: a vision statement to the year 2020 (including annex). A co-publication of CIP, CIAT, IFPRI, IITA and IPGRI, Lima. 111p

    Google Scholar 

  • Sharma AK, Venkatasalam EP, Singh RK (2011) Microtuber production behaviour of some commercially important potato (Solanum tuberosum) cultivars. Indian J Agric Sci 81(11):1008–1013

    Google Scholar 

  • Singh S (2003) Potato propagation: nucleus and breeder seed. In: Paul SM (ed) The potato-production and utilization in subtropics. Mehta Publishers, New Delhi, pp 347–355

    Google Scholar 

  • Singh V, Singh S, Kumar D, Singh BP (2011) Soil less production of potato minitubers. In: Production of disease-free quality planting material propagated through tuber and rhizomes. CPRIC, Modipuram, pp 151–155

    Google Scholar 

  • Singh V, Pandey KK, Singh S, et al (2012) Aeroponics: an innovative method of potato seed production. In: Abstracts of the national consultation on potato research and development: way forward, OAU&T Bhubaneswar, 26 Sept 2012

    Google Scholar 

  • Spiegel S, Frison EA, Converse RH (1993) Recent developments in therapy and virus-detection procedures for international movement of clonal plant germplasm. Plant Dis 77:1176–1180

    Article  Google Scholar 

  • Steward FC, Caplin SM (1951) Tissue culture from potato tuber: the synergistic action of 24-D and of coconut milk. Science 111:518–520

    Article  Google Scholar 

  • Struik PC, Lommen WJM (1999) Improving the field performance of micro- and minitubers. Potato Res 42:559–568

    Article  Google Scholar 

  • Struik PC, Wiersema SG (1999) Seed potato technology. Wageningen Press, Wageningen, pp 175–216

    Book  Google Scholar 

  • Tabori KM, Dobra’nszki J, Ferenczy A (1999) Some sprouting characteristics of microtubers. Potato Res 42:611–617

    Article  Google Scholar 

  • Teisson C, Alvard D (1999) In vitro production of potato microtubers in liquid medium using temporary immersion. Potato Res 42:499–504

    Article  Google Scholar 

  • Tiwari JK, Chandel P, Gupta S et al (2013) Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiol Mol Biol Plants 19:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhya MD (1979) Potential for potato production from true seed under developing country conditions. In: The Philippines report of the planning conference on the production of potatoes from true seed, Manila, pp 12–20

    Google Scholar 

  • Van den Berg JH, Ewing EE (1991) Jasmonates and their role in plant growth and development with special reference to the control of potato tuberization: a review. Am J Potato Res 68:781–794

    Article  Google Scholar 

  • Van der Zaag DE (1990) The implication of micropropagation for the future of seed potato production system in Europe. In: Abstracts of the 11th triennial conference of the European Association for Potato Research, European Potato Association, Edinburgh, January 1990

    Google Scholar 

  • Van der Zaag DE, Horton D (1983) Potato production and utilization in world perspective with special reference to the tropics and sub-tropics. Am J Potato Res 26:323–362

    Article  Google Scholar 

  • Van Uyen N, Vander Zaag P (1983) Vietnamese farmers use tissue culture for commercial potato production. Am J Potato Res 60:873–879

    Article  Google Scholar 

  • Wambugu FM, Secor GA, Gudmestad NC (1985) Eradication of potato virus Y and S from potato by chemotherapy of cultured axillary bud tips. Am J Potato Res 62:667–672

    Article  CAS  Google Scholar 

  • Wang PJ, Hu CY (1982) In vitro mass tuberization and virus-free seed potato production in Taiwan. Am J Potato Res 59:33–37

    Article  Google Scholar 

  • Wang PJ, Hu CY (1985) Potato tissue culture and its application in agriculture. In: Li PH (ed) Potato physiology. Academic Press, London, pp 503–577

    Google Scholar 

  • Wenzel G (1994) Tissue culture. In: Bradshaw JE, Mackay GR (eds) Potato Genetics. CAB International, Wallingford, pp 173–195

    Google Scholar 

  • Wiersema SG, Cabello R, Tovar P et al (1987) Rapid seed multiplication by planting into beds microtubers and in vitro plants. Potato Res 30:117–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naik, P.S., Buckseth, T. (2018). Recent Advances in Virus Elimination and Tissue Culture for Quality Potato Seed Production. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_4

Download citation

Publish with us

Policies and ethics