Skip to main content

Causal Concepts, Principles, and Algorithms

  • Chapter
  • First Online:
Causal Analytics for Applied Risk Analysis

Abstract

It is an important truism that association is not causation. For example, people living in low-income areas may have higher levels of exposure to an environmental hazard and also higher levels of some adverse health effect than people living in wealthier areas. Yet this observed association, no matter how strong, consistent, statistically significant, biologically plausible, and well documented by multiple independent teams, does not necessarily tell a policy maker anything about whether or by how much a proposed costly reduction in exposure would reduce adverse health effects. Perhaps only increasing income, or something that income can buy, would reduce adverse health effects. Or maybe factors that cannot be changed by policy interventions increase both the probability of living in low-income areas and the probability of adverse health effects. Whatever the truth is about opportunities to improve health by changing policy variables, it typically cannot be determined by studying correlations, regression coefficients, relative risks, or other measures of association between exposures and health effects (Pearl 2009). Observed associations between variables can contain both causal and non-causal (“spurious”) components. In general, the effects of policy changes on outcomes of interest can only be predicted and evaluated correctly by modeling the network of causal relationships by which effects of exogenous changes propagate among variables. The chapter reviews current causal concepts, principles, and algorithms for carrying out such causal modeling and compares them to other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreassen S, Hovorka R, Benn J, Olesen KG, Carson ER (1991) A model-based approach to insulin adjustment. In: Proceedings of AIME’91, pp 239–248

    Chapter  Google Scholar 

  • Angrist JD, Imbens GW, Rubin DB (1996) Identification of causal effects using instrumental variables. J Am Stat Assoc 91(434):444–455

    Article  Google Scholar 

  • Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from Ambient PM2.5. Environ Sci Technol 49(13):8057–8066

    Article  Google Scholar 

  • Aragam B, Gu J, Zhou Q (2017) Learning large-scale Bayesian networks with the sparsebn package. arXiv: 1703.04025. https://arxiv.org/abs/1703.04025. Accessed 19 Dec 2017

  • Asghar N (2016) Automatic extraction of causal relations from natural language texts: a comprehensive survey. https://arxiv.org/pdf/1605.07895.pdf. Accessed 19 Dec 2017

  • Azzimonti L, Corani G, Zaffalon M (2017) Hierarchical Multinomial-Dirichlet model for the estimation of conditional probability tables. https://arxiv.org/abs/1708.06935. Accessed 18 November 2017

  • Bareinboim E, Pearl J (2013) Causal transportability with limited experiments. In: Proceedings of the 27th AAAI conference on artificial intelligence, pp 95–101. ftp://ftp.cs.ucla.edu/pub/stat_ser/r408.pdf

  • Barnett L, Seth AK (2014) The MVGC multivariate granger causality toolbox: a new approach to granger-causal inference. J Neurosci Methods 223:50–68

    Article  Google Scholar 

  • Bartholomew MJ, Vose DJ, Tollefson LR, Travis CC (2005) A linear model for managing the risk of antimicrobial resistance originating in food animals. Risk Anal 25(1):99–108

    Article  Google Scholar 

  • Bearfield G, Marsh W (2005) Generalising event trees using bayesian networks with a case study of train derailment. In: Winther R, Gran BA, Dahll G (eds) Computer safety, reliability, and security. SAFECOMP 2005, Lecture notes in computer science, vol 3688. Springer, Berlin, Heidelberg

    Google Scholar 

  • Blalock HM (1964) Causal inferences in nonexperimental research. The University of North Carolina Press, Chapel Hill, NC

    Google Scholar 

  • Bobbio A, Portinale L, Minichino M, Ciancamerla E (2001) Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab Eng Syst Saf 71:249–260

    Article  Google Scholar 

  • Bontempi G, Flauder M (2015) From dependency to causality: a machine learning approach. J Mach Learn Res 16:2437–2457

    Google Scholar 

  • Boutilier C, Dearden R, Goldszmidt M (1995) Exploiting structure in policy construction. In: Proceedings of the 14th international joint conference on artificial intelligence, Montreal, QC, Canada, pp 1104–1113

    Google Scholar 

  • Brewer LE, Wright JM, Rice G, Neas L, Teuschler L (2017) Causal inference in cumulative risk assessment: the roles of directed acyclic graphs. Environ Int 102:30–41. https://doi.org/10.1016/j.envint.2016.12.005

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Campbell DT, Stanley JC (1963) Experimental and quasi-experimental designs for research. Houghton Mifflin Company, Boston, MA

    Google Scholar 

  • Charniak E (1991) Bayesian networks without tears. AI Mag 12(1):50–63. https://www.aaai.org/ojs/index.php/aimagazine/article/download/918/836

    Google Scholar 

  • Clancy L, Goodman P, Sinclair H, Dockery DW (2002) Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 360(9341):1210–1214

    Article  Google Scholar 

  • Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C (2010) Illustrating bias due to conditioning on a collider. Int J Epidemiol 39(2):417–420

    Article  Google Scholar 

  • Cossalter M, Mengshoel O, Selker T (2011) Visualizing and understanding large-scale Bayesian networks. In: Proceedings of the 17th AAAI conference on scalable integration of analytics and visualization, AAAI Press, pp 12–21

    Google Scholar 

  • Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, Hoboken, NJ. ISBN-13 978-0-471-24195-9. ISBN-10 0-471-24195-4. https://archive.org/details/ElementsOfInformationTheory2ndEd. Accessed 9 Jan 2018

    Google Scholar 

  • Cox LA Jr (2017a) Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality. Crit Rev Toxicol 47(7):603–631. https://doi.org/10.1080/10408444.2017.1311838

    Article  Google Scholar 

  • Cox LA Jr (2017b) Socioeconomic and air pollution correlates of adult asthma, heart attack, and stroke risks in the United States, 2010-2013. Environ Res 155:92–107. https://doi.org/10.1016/j.envres.2017.01.003

    Article  Google Scholar 

  • Cox LA Jr (1984) Probability of causation and the attributable proportion of risk. Risk Anal 4:221–230. http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.1984.tb00142.x/full

    Article  Google Scholar 

  • Cox LA Jr (1987) Statistical issues in the estimation of assigned shares for carcinogenesis liability. Risk Anal 7(1):71–80

    Article  Google Scholar 

  • Crowley M (2004) Evaluating influence diagrams. www.cs.ubc.ca/~crowley/papers/aiproj.pdf

  • Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Dominici F, Schwartz JD (2017) Association of short-term exposure to air pollution with mortality in older adults. J Am Med Assoc 318(24):2446–2456

    Article  Google Scholar 

  • Ding P (2017) A paradox from randomization-based causal inference. Statist Sci 32(3):331–345. https://arxiv.org/pdf/1402.0142.pdf

    Article  Google Scholar 

  • Dockery DW, Rich DQ, Goodman PG, Clancy L, Ohman-Strickland P, George P, Kotlov T, HEI Health Review Committee (2013) Effect of air pollution control on mortality and hospital admissions in Ireland. Res Rep Health Eff Inst 176:3–109

    Google Scholar 

  • Dominici F, Zigler C (2017) Best practices for gauging evidence of causality in air pollution epidemiology. Am J Epidemiol

    Google Scholar 

  • Dockery D, Pope C, Xu X et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759

    Article  Google Scholar 

  • Druzdzel MJ, Simon H (1993) Causality in bayesian belief networks. In: UAI’93 proceedings of the ninth international conference on uncertainty in artificial intelligence, Washington, DC, 9–11 July 1993. Morgan Kaufmann Publishers Inc., San Francisco, CA, pp 3–11

    Chapter  Google Scholar 

  • Dugan JB (2000) Galileo: a tool for dynamic fault tree analysis. In: Haverkort BR, Bohnenkamp HC, Smith CU (eds) Computer performance evaluation. Modelling techniques and tools. TOOLS 2000. Lecture Notes in Computer Science, vol 1786. Springer, Berlin, Heidelberg

    Google Scholar 

  • Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ (2012) Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32(1):81–95

    Article  Google Scholar 

  • Franklin M, Zeka A, Schwartz J (2006) Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 17:279–287

    Article  Google Scholar 

  • Frey L, Fisher D, Tsamardinos I, Aliferis CF, Statnikov A (2003) Identifying Markov blankets with decision tree induction. In: Proceedings of the third IEEE international conference on data mining, Melbourne, FL, 19–22 Nov 2003. pp 59–66

    Google Scholar 

  • Friston K, Moran R, Seth AK (2013) Analyzing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 23(2):172–178

    Article  Google Scholar 

  • Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M (2011) Doubly robust estimation of causal effects. Am J Epidemiol 173(7):761–767. https://doi.org/10.1093/aje/kwq439

    Article  Google Scholar 

  • Furgan MS, Sival MY (2016) Inference of biological networks using Bi-directional Random Forest Granger causality. Springerplus 5(514). https://doi.org/10.1186/s40064-016-2156-y

  • Gamble JF (2011) Crystalline silica and lung cancer: a critical review of the occupational epidemiology literature of exposure-response studies testing this hypothesis. Crit Rev Toxicol 41(5):404–465. https://doi.org/10.3109/10408444.2010.541223

    Article  Google Scholar 

  • Gharamani Z (2001) An introduction to Hidden Markov models and Bayesian networks. Int J Pattern Recognit Artif Intell 15(1):9–42. http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf

    Article  Google Scholar 

  • Giannadaki D, Lelieveld J, Pozzer A (2016) Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year. Environ Health 15(1):88

    Article  Google Scholar 

  • Glass TA, Goodman SN, Hernán MA, Samet JM (2013) Causal inference in public health. Annu Rev Public Health 34:61–75. https://doi.org/10.1146/annurev-publhealth-031811-124606

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  • Greenland S (2015) Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol 25(3):155–161. https://doi.org/10.1016/j.annepidem.2014.11.005

    Article  Google Scholar 

  • Hart J, Garshick E, Dockery D, Smith T, Ryan L, Laden F (2011) Long-term ambient multi-pollutant exposures and mortality. Am J Respir Crit Care Med 183:73–78

    Article  Google Scholar 

  • Hausman DM, Woodward J (2004) Modularity and the causal markov condition: a restatement. Br J Philos Sci 55(1):147–161. https://doi.org/10.1093/bjps/55.1.147

    Article  Google Scholar 

  • Hausman DM, Woodward J (1999) Independence, invariance, and the Causal Markov condition. Br J Philos Sci 50(4):521 583. https://doi.org/10.1093/bjps/50.4.521

    Article  Google Scholar 

  • Heinze-Deml C, Peters J, Meinshausen N (2017) Invariant causal prediction for nonlinear models. https://arxiv.org/pdf/1706.08576.pdf

  • Hernan M, VanderWeele T (2011) On compound treatments and transportability of causal inference. Epidemiology 22:368

    Article  Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    Google Scholar 

  • Hill J (2016) Atlantic causal inference conference competition: IS your SATT where it’s at? http://jenniferhill7.wixsite.com/acic-2016/competition

  • Höfler M (2005) The Bradford Hill considerations on causality: a counterfactual perspective. Emerg Themes Epidemiol 2:11

    Article  Google Scholar 

  • Holt J, Leach AW, Johnson S, Tu DM, Nhu DT, Anh NT, Quinlan MM, Whittle PJL, Mengersen K, Mumford JD (2017) Bayesian networks to compare pest control interventions on commodities along agricultural production chains. Risk Anal. https://doi.org/10.1111/risa.12852

  • Hoover KD (2012) Causal structure and hierarchies of models. Stud History Philos Sci C 43(4):778–786. https://doi.org/10.1016/j.shpsc.2012.05.007

    Article  Google Scholar 

  • IARC (2006) IARC monographs on the evaluation of carcinogenic risk to humans: preamble. International Agency for Research on Cancer (IARC), Lyons, France. http://monographs.iarc.fr/ENG/Preamble/CurrentPreamble.pdf

    Google Scholar 

  • Imai K, Keele L, Tingley D, Yamamoto T (2011) Unpacking the black box of causality: learning about causal mechanisms from experimental and observational studies. Am Polit Sci Rev 4:105

    Google Scholar 

  • Iserman R, Münchhof M (2011) Identification of dynamic systems: an introduction with applications. Springer, New York, NY

    Book  Google Scholar 

  • Jonsson A, Barto B (2007) Active learning of dynamic Bayesian networks in Markov decision processes. In: SARA’07 proceedings of the 7th international conference on abstraction, reformulation, and approximation, Whistler, Canada, 18–21 July 2007. Springer, Berlin, pp 273–284

    Google Scholar 

  • Kahneman D (2011) Thinking fast and slow. Farrar, Straus, and Giroux, New York

    Google Scholar 

  • Khakzad N, Reniers G (2015) Risk-based design of process plants with regard to domino effects and land use planning. J Hazard Mater 299:289–297. https://doi.org/10.1016/j.jhazmat.2015.06.020

    Article  Google Scholar 

  • Keele L, Tingley D, Yamamoto T (2015) Identifying mechanisms behind policy interventions via causal mediation analysis. J Policy Anal Manage 34(4):937–963

    Article  Google Scholar 

  • Kenny DA (1979) Correlation and causality. Wiley, New York

    Google Scholar 

  • Khakzad N, Khan F, Amyotte P (2013) Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf Environ Prot 91(1–2):46–53

    Article  Google Scholar 

  • Kleinberg S, Hripcsak G (2011) A review of causal inference for biomedical informatics. J Biomed Inform 44(6):1102–1112

    Article  Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge, MA

    Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28(5):1–26. https://www.jstatsoft.org/article/view/v028i05/v28i05.pdf

    Article  Google Scholar 

  • Lähdesmäki H, Hautaniemi S, Shmulevich I, Yli-Hari O (2006) Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Process 86(4):814–834. https://doi.org/10.1016/j.sigpro.2005.06.008

    Article  Google Scholar 

  • Lagani V, Triantafillou S, Ball G, Tegnér J, Tsamardinos I. (2016) Chapter 2: probabilistic computational causal discovery for systems biology. In: Geris L, Gomez-Cabrero D (eds) Uncertainty in biology: a computational modeling approach. Springer

    Google Scholar 

  • Lancet (2017) www.thelancet.com/pb-assets/Lancet/stories/commissions/pollution-2017/Pollution_and_Health_Infographic.pdf

  • Lee S, Honavar V (2013) m-transportability: transportability of a causal effect from multiple environments. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence. www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/viewFile/6303/7210 (Bareinboim and Pearl, 2013; Lee and Honavar, 2013)

  • Leu SS, Chang CM (2013) Bayesian-network-based safety risk assessment for steel construction projects. Accid Anal Prev 54:122–133. https://doi.org/10.1016/j.aap.2013.02.019

    Article  Google Scholar 

  • Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120:965–970

    Article  Google Scholar 

  • Li J, Ma S, Le T, Liu L, Liu J (2017) Causal decision trees. IEEE Trans Knowl Data Eng 29(2):257–271

    Article  Google Scholar 

  • Lo WC, Shie RH, Chan CC, Lin HH (2016) Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. J Formos Med Assoc 116(1):32–40

    Article  Google Scholar 

  • Lok JJ (2017) Mimicking counterfactual outcomes to estimate causal effects. Ann Stat 45(2):461–499. https://doi.org/10.1214/15-AOS1433

    Article  Google Scholar 

  • Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in systems biology. AMB Express 1:45. https://doi.org/10.1186/2191-0855-1-45

    Article  Google Scholar 

  • Maglogiannis I, Zafiropoulos E, Platis A, Lambrinoudakis C (2006) Risk analysis of a patient monitoring system using Bayesian network modeling. J Biomed Inform 39(6):637–647

    Article  Google Scholar 

  • Maldonado G (2013) Toward a clearer understanding of causal concepts in epidemiology. Ann Epidemiol 23(12):743–749

    Article  Google Scholar 

  • Mauá DD (2016) Equivalences between maximum a posteriori inference in Bayesian networks and maximum expected utility computation in influence diagrams. Int J Approx Reason 68(C):211–229

    Article  Google Scholar 

  • McClellan RO (1999) Human health risk assessment: a historical overview and alternative paths forward. Inhal Toxicol 11(6–7):477–518

    Article  Google Scholar 

  • Mengshoel OJ, Chavira M, Cascio K, Poll S, Darwiche A, Uckun S (2010) Probabilistic model-based diagnosis: an electrical power system case study. IEEE Trans Syst Man Cybern Part A Syst Hum 40(5):874–885

    Article  Google Scholar 

  • Menzies P (2012) The causal structure of mechanisms. Stud Hist Phil Biol Biomed Sci 43(4):796–805. https://doi.org/10.1016/j.shpsc.2012.05.00

    Article  Google Scholar 

  • Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369(5):448–457. https://doi.org/10.1056/NEJMra1201534

    Article  Google Scholar 

  • Nadkarni S, Shenoy PP (2004) A causal mapping approach to constructing Bayesian networks. Decis Support Syst 38(2):259–281. https://doi.org/10.1016/S0167-9236(03)00095-2

    Article  Google Scholar 

  • National Research Council (2012) Deterrence and the death penalty. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/13363

    Book  Google Scholar 

  • Ogarrio JM, Spirtes P, Ramsey J (2016) A hybrid causal search algorithm for latent variable models. JMLR Workshop Conf Proc 52:368–379. www.ncbi.nlm.nih.gov/pmc/articles/PMC5325717/

    Google Scholar 

  • Neyman J (1923) Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes. Master’s thesis (trans: Dabrowska DM, Speed TP) Excerpts reprinted in English, Statistical Science, vol 5, pp 463–472

    Google Scholar 

  • Nowzohour C, Bühlmann P (2016) Score based causal learning in additive noise models. Statistics 50(3):471–485

    Article  Google Scholar 

  • Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334(18):1150–1155

    Article  Google Scholar 

  • Pang M, Schuster T, Filion KB, Schnitzer ME, Eberg M, Platt RW (2016) Effect estimation in point-exposure studies with binary outcomes and high-dimensional covariate data—a comparison of targeted maximum likelihood estimation and inverse probability of treatment weighting. Int J Biostat 12(2). https://doi.org/10.1515/ijb-2015-0034

  • Papana A, Kyrtsou C, Kugiumtzis D, Diks C (2017) Assessment of resampling methods for causality testing: a note on the US inflation behavior. PLoS One 12(7):e0180852. https://doi.org/10.1371/journal.pone.0180852

    Article  Google Scholar 

  • Pearl J (1993) Comment: graphical models, causality and intervention. Stat Sci 8:266–2669 https://doi.org/10.1214/ss/1177010894

    Article  Google Scholar 

  • Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, Morgan Kaufmann, San Francisco, CA, pp 411–420

    Google Scholar 

  • Pearl J (2009) Causal inference in statistics: an overview. Stat Surv 3:96–146. https://projecteuclid.org/download/pdfview_1/euclid.ssu/1255440554

    Article  Google Scholar 

  • Pearl J (2010) An introduction to causal inference. Int J Biostat 6(2):7

    Article  Google Scholar 

  • Pearl J (2014) Reply to commentary by Imai, Keele, Tingley, and Yamamo to concerning causal mediation analysis. Psychol Methods 19(4):488–492

    Article  Google Scholar 

  • Peters J, Bühlmann P, Meinshausen N (2016) Causal inference using invariant prediction: identification and confidence intervals. J R Stat Soc Ser B 78(5):947–1012

    Article  Google Scholar 

  • Petersen ML, Sinisi SE, van der Laan MJ (2006) Estimation of direct causal effects. Epidemiology 17(3):276–284

    Article  Google Scholar 

  • Petitti DB (1991) Associations are not effects. Am J Epidemiol 133(2):101–102. https://academic.oup.com/aje/article-abstract/133/2/101/118425/Associations-Are-Not-Effects?redirectedFrom=PDF

    Article  Google Scholar 

  • Peyrard N, Givry S, Franc A, Robin S, Sabbadin R, Schiex T, Vignes M (2015) Exact and approximate inference in graphical models: Variable elimination and beyond. https://arxiv.org/pdf/1506.08544.pdf

  • Poole DL, Mackworth AK (2017) Artificial intelligence: foundations of computational agents, 2nd edn. Cambridge University Press. http://artint.info/2e/html/ArtInt2e.html

  • Prüss-Üstün A, Mathers C, Corvalán C, Woodward A (2003) Introduction and methods: Assessing the environmental burden of disease at national and local levels, Environmental burden of disease series No. 1. World Health Organization (WHO), Geneva, Switzerland. www.who.int/quantifying_ehimpacts/publications/en/9241546204chap4.pdf?ua=1

    Google Scholar 

  • Relton C, Torgerson D, O’Cathain A, Nicholl J (2010) Rethinking pragmatic randomised controlled trials: introducing the “cohort multiple randomised controlled trial” design. BMJ 340:c1066. https://doi.org/10.1136/bmj.c1066. http://www.bmj.com/content/340/bmj.c1066

    Article  Google Scholar 

  • Rhomberg LR, Chandalia JK, Long CM, Goodman JE (2011) Measurement error in environmental epidemiology and the shape of exposure-response curves. Crit Rev Toxicol 41(8):651–671. https://doi.org/10.3109/10408444.2011.563420

    Article  Google Scholar 

  • Richardson TS, Rotnitzky A (2014) Causal etiology of the research of James M. Robins. Stat Sci 29(4):459–484. https://doi.org/10.1214/14-STS505

    Article  Google Scholar 

  • Rigaux C, Ancelet S, Carlin F, Nguyen-thé C, Albert I (2013) Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model with durability studies: application to Bacillus cereus on a courgette purée production chain. Risk Anal 33(5):877–892. https://doi.org/10.1111/j.1539-6924.2012.01888.x

    Article  Google Scholar 

  • Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 3:143–155

    Article  Google Scholar 

  • Rosenbaum P, Rubin D (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55. https://doi.org/10.2307/2335942

    Article  Google Scholar 

  • Rothenhausler D, Heinze C, Peters J, Meinschausen N (2015) BACKSHIFT: learning causal cyclic graphs from unknown shift interventions. arXiv pre-print https://arxiv.org/pdf/1506.02494.pdf. See also the BACKSHIFT R package at https://cran.r-project.org/web/packages/backShift/backShift.pdf

  • Rubin D (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66(5):688–701

    Article  Google Scholar 

  • Rubin D (1978) Bayesian inference for causal effects: the role of randomization. Ann Stat 6:34–58

    Article  Google Scholar 

  • Rubin DB (2004) Direct and indirect causal effects via potential outcomes. Scand J Stat 31:161–170

    Article  Google Scholar 

  • Sanchez-Graillet O, Poesio M (2004) Acquiring Bayesian networks from text. In: Proceedings of the fourth international conference on language resources and evaluation (LREC’04), Lisbon, Portugal, May 26–28. European Language Resources Association (ELRA), Paris, France. www.lrec-conf.org/proceedings/lrec2004/

  • Savageau M, Voit E (1987) Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math Biosci 87(1):83–115

    Article  Google Scholar 

  • Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270

    Article  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464. https://doi.org/10.1103/PhysRevLett.85.461

    Article  Google Scholar 

  • Shachter RD (1986) Evaluating influence diagrams. Oper Res 34(6):871–882

    Article  Google Scholar 

  • Shachter RD, Bhattacharjya D (2010) Solving influence diagrams: exact algorithms. In: Cochran J et al (eds) Wiley encyclopedia of operations research and management science. Wiley, New York. www.it.uu.se/edu/course/homepage/aism/st11/Shachter10.pdf

    Google Scholar 

  • Schwartz S, Gatto NM, Campbell UB (2011) Transportabilty and causal generalization. Epidemiology 22(5):745–746

    Article  Google Scholar 

  • Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM(2.5) and daily deaths. Environ Health Perspect 110(10):1025–1029

    Article  Google Scholar 

  • Shimizu S, Hoyer PO, Hyvarinen A, Kerminen A (2006) A linear non-Gaussian acyclic model for causal discovery. J Mach Learn Res 7:2003–2030

    Google Scholar 

  • Shpitser I, Pearl J (2008) Complete identification methods for the causal hierarchy. J Mach Learn Res 9(Sep):1941–1979

    Google Scholar 

  • Simon HA (1953) Chapter III: Causal ordering and identifiability. In: Hood WC, Koopmans TC (eds) Studies in econometric method, Cowles Commission for Research in Economics Monograph No. 14. Wiley, New York, NY, pp 49–74

    Google Scholar 

  • Simon HA (1954) Spurious correlation: a causal interpretation. J Am Stat Assoc 49(267):467–479

    Google Scholar 

  • Simon HA, Iwasaki Y (1988) Causal ordering, comparative statics, and near decomposability. J Econ 39:149–173. http://digitalcollections.library.cmu.edu/awweb/awarchive?type=file&item=34081

    Article  Google Scholar 

  • Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ (2007) A risk model for prediction of lung cancer. J Natl Cancer Inst 99(9):715–726

    Article  Google Scholar 

  • Suppes P (1970) A probabilistic theory of causality. North-Holland Publishing Company, Amsterdam, Holland

    Google Scholar 

  • Tashiro T, Shimizu S, Hyvärinen A, Washio T (2014) ParceLiNGAM: a causal ordering method robust against latent confounders. Neural Comput 26(1):57–83. https://doi.org/10.1162/NECO_a_00533

    Article  Google Scholar 

  • Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison GT (2016) Robust causal inference using directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol 45(6):1887–1894

    Google Scholar 

  • Theocharous G, Murphy K, Kaelbling LP (2004) Representing hierarchical POMDPs as DBNs for multi-scale robot localization. In: Proceedings of the IEEE international conference on robotics and automation ICRA’04

    Google Scholar 

  • Triantafillou S, Tsamardinos I (2015) Constraint-based causal discovery from multiple interventions over overlapping variable sets. J Mach Learn Res 16:2147–2205

    Google Scholar 

  • Trovati M (2015) Extraction of Bayesian networks from large unstructured datasets. In: Trovati M, Hill R, Anjum A, Zhu S, Liu L (eds) Big-data analytics and cloud computing. Springer, Cham

    Chapter  Google Scholar 

  • Tudor RS, Hovorka R, Cavan DA, Meeking D, Hejlesen OK, Andreassen S (1998) DIAS-NIDDM—a model-based decision support system for insulin dose adjustment in insulin-treated subjects with NIDDM. Comput Methods Prog Biomed 56(2):175–191

    Article  Google Scholar 

  • VanderWeele TJ, Vansteelandt S (2009) Conceptual issues concerning mediation, interventions and composition. Stat Its Interface 2:457–468

    Article  Google Scholar 

  • Voortman M, Dash D, Druzdzel MJ (2010) Learning causal models that make correct manipulation predictions with time series data. Proc Mach Learn Res 6:257–266. http://proceedings.mlr.press/v6/voortman10a/voortman10a.pdf

    Google Scholar 

  • Vrignat P, Avila M, Duculty F, Kratz F (2015) Failure event prediction using Hidden Markov Model approaches. IEEE Trans Reliab 99:1–11

    Google Scholar 

  • Westreich D (2012) Berkson’s bias, selection bias, and missing data. Epidemiology 23(1):159–164. https://doi.org/10.1097/EDE.0b013e31823b6296

    Article  Google Scholar 

  • Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) Measuring information-transfer delays. PLoS One 8(2):e55809. https://doi.org/10.1371/journal.pone.0055809

    Article  Google Scholar 

  • Wintle BC, Nicholson A (2014) Exploring risk judgments in a trade dispute using Bayesian networks. Risk Anal 34(6):1095–1111. https://doi.org/10.1111/risa.12172

    Article  Google Scholar 

  • Wickham H (2014) Tidy data. J Stat Softw 59(10):1–23

    Article  Google Scholar 

  • Wiener N (1956) The theory of prediction. In: Beckenbach EF (ed) Modern mathematics for engineers, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585. www.ssc.wisc.edu/soc/class/soc952/Wright/Wright_Correlation%20and%20Causation.pdf

    Google Scholar 

  • Wu AH, Yu MC, Thomas DC, Pike MC, Henderson BE (1988) Personal and family history of lung disease as risk factors for adenocarcinoma of the lung. Cancer Res 48(24 Pt 1):7279–7284

    Google Scholar 

  • Zhang J (2008) On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif Intell 172(16–17):1873–1896

    Article  Google Scholar 

  • Zhang JL, Rubin DB (2003) Estimation of causal effects via principal stratification when some outcomes are truncated by “death”. J Educ Behav Stat 28:353–368. https://doi.org/10.3102/10769986028004353

    Article  Google Scholar 

  • Zhang L, Wu X, Qin Y, Skibniewski MJ, Liu W (2016) Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Anal 36(2):278–301. https://doi.org/10.1111/risa.12448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cox Jr., L.A., Popken, D.A., Sun, R.X. (2018). Causal Concepts, Principles, and Algorithms. In: Causal Analytics for Applied Risk Analysis. International Series in Operations Research & Management Science, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-319-78242-3_2

Download citation

Publish with us

Policies and ethics