Skip to main content

Prospects for Enhancing Efficacy of Radioimmunotherapy

  • Chapter
  • First Online:
Resistance to Ibritumomab in Lymphoma

Abstract

Radioimmunotherapy has been in use for more than 20 years and has progressed significantly since its efficacy has first been demonstrated in hematology. Yet it still has limitations that prevent its large-scale clinical use. This chapter reviews recent developments to overcome these limitations including new antibody specificities, pretargeting methods, fractionated injections, and the use of alpha emitters. Immuno-PET is also likely to assist in selecting patients for radioimmunotherapy, optimizing injected activities, and noninvasively monitoring therapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Antibody drug conjugate

AML:

Acute myeloid leukemia

ARC:

Antibody radionuclide conjugate

BsMAb:

Bispecific monoclonal antibody

CEA:

Carcinoembryonic antigen

EGFR:

Epidermal growth factor receptor

HSG:

Histamine-succinyl-glutamine

LET:

Linear energy transfer

MRD:

Minimal residual disease

MTD:

Maximum tolerated dose

NHL:

Non-Hodgkin B-cell lymphoma

PSMA:

Prostate-specific membrane antigen

RIT:

Radioimmunotherapy

SPECT:

Single-photon emission computed tomography

PET:

Positron emission tomography

References

  1. Chatal JF, Kraber-Bodere F, Bodet-Milin C, Rousseau C. Therapeutic immunoconjugates. Which cytotoxic payload: chemotherapeutic (ADC) or radionuclide (ARC) ? Curr Cancer Therapy Rev. 2016;12:54.

    Article  CAS  Google Scholar 

  2. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, et al. Tumor, red marrow, and organ dosimetry for 131I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res. 1990;50:1039s–42s.

    CAS  PubMed  Google Scholar 

  3. Bardiès M, Bardet S, Faivre-Chauvet A, Peltier P, Douillard JY, Mahé M, et al. Bispecific antibody and iodine-131-labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer. J Nucl Med. 1996;37:1853–9.

    PubMed  Google Scholar 

  4. Zanzonico P. Radioimmunotherapy of micrometastases: a continuing evolution. J Nucl Med. 1992;33:2180–3.

    CAS  PubMed  Google Scholar 

  5. DeNardo GL, Schlom J, Buchsbaum DJ, Meredith RF, O’Donoghue JA, Sgouros G, et al. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer. 2002;94:1332–48.

    Article  CAS  Google Scholar 

  6. Schlom J, Molinolo A, Simpson JF, Siler K, Roselli M, Hinkle G, et al. Advantage of dose fractionation in monoclonal antibody-targeted radioimmunotherapy. J Natl Cancer Inst. 1990;82:763–71.

    Article  CAS  Google Scholar 

  7. Illidge TM, Mayes S, Pettengell R, Bates AT, Bayne M, Radford JA, et al. Fractionated 90Y-ibritumomab tiuxetan radioimmunotherapy as an initial therapy of follicular lymphoma: an international phase II study in patients requiring treatment according to GELF/BNLI criteria. J Clin Oncol. 2014;32:212–8.

    Article  CAS  Google Scholar 

  8. Scholz CW, Pinto A, Linkesch W, Lindén O, Viardot A, Keller U, et al. (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31:308–13.

    Article  CAS  Google Scholar 

  9. Batra JS, Karir BS, Vallabhajosula S, Christos PJ, Hodes G, Date PR, et al. Fractionated dose radiolabeled antiprostate specific membrane antigen (PSMA) radioimmunotherapy (177Lu-J591) with or without docetaxel for metastatic castration-resistant prostate cancer (mCRPC). ASCO Meeting Abstr. 2015;33:194.

    Google Scholar 

  10. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Article  CAS  Google Scholar 

  11. Tschmelitsch J, Barendswaard E, Williams C, Yao TJ, Cohen AM, Old LJ, et al. Enhanced antitumor activity of combination radioimmunotherapy (131I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Cancer Res. 1997;57:2181–6.

    CAS  PubMed  Google Scholar 

  12. Wong JYC, Chu DZ, Yamauchi DM, Williams LE, Liu A, Wilczynski S, et al. A phase I radioimmunotherapy trial evaluating 90yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin Cancer Res. 2000;6:3855–63.

    CAS  PubMed  Google Scholar 

  13. Wong JYC, Shibata S, Williams LE, Kwok CS, Liu A, Chu DZ, et al. A phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res. 2003;9:5842–52.

    CAS  PubMed  Google Scholar 

  14. Gulec SA, Cohen SJ, Pennington KL, Zuckier LS, Hauke RJ, Horne H, et al. Treatment of advanced pancreatic carcinoma with 90Y-Clivatuzumab Tetraxetan: a phase I single-dose escalation trial. Clin Cancer Res. 2011;17:4091–100.

    Article  CAS  Google Scholar 

  15. Ocean AJ, Pennington KL, Guarino MJ, Sheikh A, Bekaii-Saab T, Serafini AN, et al. Fractionated radioimmunotherapy with (90) Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: a phase 1 trial. Cancer. 2012;118:5497–506.

    Article  CAS  Google Scholar 

  16. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.

    Article  CAS  Google Scholar 

  17. Tagawa ST, Whang YE, Kaur G, Vallabhajosula S, Christos PJ, Nikolopoulou A, et al. Phase I trial of docetaxel/prednisone plus fractionated dose radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody 177lu-J591 in patients with metastatic, castration-resistant prostate cancer (mCRPC). ASCO Meeting Abstr. 2014;32:5064.

    Google Scholar 

  18. Barbet J, Peltier P, Bardet S, Vuillez JP, Bachelot I, Denet S, et al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39:1172–8.

    CAS  PubMed  Google Scholar 

  19. Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, Mathieu C, Guérard F, Frampas E, et al. Tumor immunotargeting using innovative radionuclides. Int J Mol Sci. 2015;16:3932–54.

    Article  Google Scholar 

  20. Salaun P-Y, Campion L, Bournaud C, Faivre-Chauvet A, Vuillez J-P, Taieb D, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012;53:1185–92.

    Article  CAS  Google Scholar 

  21. Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang C-H. Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci U S A. 2006;103:6841–6.

    Article  CAS  Google Scholar 

  22. Sharkey RM, McBride WJ, Karacay H, Chang K, Griffiths GL, Hansen HJ, et al. A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res. 2003;63:354–63.

    CAS  PubMed  Google Scholar 

  23. Schoffelen R, van der Graaf WTA, Franssen G, Sharkey RM, Goldenberg DM, McBride WJ, et al. Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. J Nucl Med. 2010;51:1780–7.

    Article  Google Scholar 

  24. Schoffelen R, Woliner-van der Weg W, Visser EP, Goldenberg DM, Sharkey RM, McBride WJ, et al. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2014;41:1593–602.

    CAS  PubMed  Google Scholar 

  25. Bodet-Milin C, Ferrer L, Rauscher A, Masson D, Rbah-Vidal L, Faivre-Chauvet A, et al. Pharmacokinetics and dosimetry studies for optimization of Pretargeted Radioimmunotherapy in CEA-expressing advanced lung Cancer patients. Front Med (Lausanne). 2015;2:84.

    Google Scholar 

  26. Chatal J-F, Davodeau F, Cherel M, Barbet J. Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther. 2009;5(Suppl 1):S36–40.

    Article  CAS  Google Scholar 

  27. Guérard F, Gestin J-F, Brechbiel MW. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother Radiopharm. 2013;28:1–20.

    Article  Google Scholar 

  28. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    CAS  PubMed  Google Scholar 

  29. Jurcic JG, Rosenblat TL. Targeted alpha-particle immunotherapy for acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2014:e126–31.

    Article  Google Scholar 

  30. Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55:1636–42.

    Article  CAS  Google Scholar 

  31. Orozco JJ, Bäck T, Kenoyer A, Balkin ER, Hamlin DK, Wilbur DS, et al. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–67.

    Article  CAS  Google Scholar 

  32. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–8.

    Article  CAS  Google Scholar 

  33. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2 – a phase I study. J Nucl Med. 2009;50:1153–60.

    Article  CAS  Google Scholar 

  34. Kraeber-Bodéré F, Bodet-Milin C, Rousseau C, Eugène T, Pallardy A, Frampas E, et al. Radioimmunoconjugates for the treatment of cancer. Semin Oncol. 2014;41:613–22.

    Article  Google Scholar 

  35. Rousseau C, Ruellan AL, Bernardeau K, Kraeber-Bodéré F, Gouard S, Loussouarn D, et al. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. EJNMMI Res. 2011;1:20.

    Article  Google Scholar 

  36. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, et al. Immuno-PET imaging and radioimmunotherapy of 64Cu-/177Lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med. 2016;57:1105.

    Article  CAS  Google Scholar 

  37. Rizvi SNF, Visser OJ, Vosjan MJWD, van Lingen A, Hoekstra OS, Zijlstra JM, et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39:512–20.

    Article  CAS  Google Scholar 

  38. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJWD, Visser GWM, Zijlstra JM, et al. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:1337–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by grants from the French National Agency for Research called “Investissements d’Avenir” Labex IRON n°ANR-11-LABX-0018-01 and Equipex Arronax-Plus n°ANR-11-EQPX-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Chatal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bailly, C. et al. (2018). Prospects for Enhancing Efficacy of Radioimmunotherapy. In: Hosono, M., Chatal, JF. (eds) Resistance to Ibritumomab in Lymphoma. Resistance to Targeted Anti-Cancer Therapeutics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-78238-6_10

Download citation

Publish with us

Policies and ethics