Skip to main content

The Types, Structure and Design of Small-Scale Bioreactors Producing Biogas

  • Chapter
  • First Online:
Small Bioreactors for Management of Biodegradable Waste

Abstract

Chapter 4 includes the designing of the small bioreactors, their types and constructions used in the world; however, more attention is provided to the small bioreactors that were designed and constructed by the authors of the book. The design differences between the bioreactors of continuous and periodic type are discussed. The new models of the small bioreactors with the constructive decisions of waste input system to minimize energy used for the feeding process and reduction of the oxygen amount that enters the system are presented and described in-depth. The effect of upscaling from the model to the prototype level is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrinz [interaktyvus] (2008) [Žiūrėta 2010 m. Birželio 02 d.]. Prieiga per internetą

    Google Scholar 

  • Al Seadi T (2001) Good practice in quality management of AD residues from blogas production. IEA Bioenergy and AEA Technology Environment, Oxfordshire, p 32

    Google Scholar 

  • Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S (2008) Biogas handbook. Niels Bohrs Vej 9–10, DK-6700 Esbjerg, University of Southern Denmark Esbjerg, Denmark, ISBN: 978-87-992962-0-0.2008

    Google Scholar 

  • Alkhamis TM, El-khazali R, Kablan MM, Alhusein MA (2000) Heating of a biogas reactor using a solar energy system with temperature control unit. Solar energy 69(3):239–247

    Article  CAS  Google Scholar 

  • Anani A, Jibrill Z, Abu-Allan (1990) Standardized charts for cost-benefit analysis of biogas systems: case study in Jordan. Sol Wind Technol 7(2/3):229–236

    Article  Google Scholar 

  • ARTI Biogas Plants [interaktyvus] [Žiūrėta (2010) m. rugsėjo 25 d.] Prieiga per internetą

    Google Scholar 

  • Baltrėnas P, Kvasauskas M (2008) Anaerobinė organinių atliekų utilizacija ir biodujų išgavimas. Ekologija 54(1):57–63

    Article  Google Scholar 

  • Baltrėnas P, Kvasauskas M (2010) Bioreaktorius ir biodujų gamybos būdas: Lietuvos patentas Nr. LT 5666 B. Vilnius, 2010

    Google Scholar 

  • Baltrėnas P, Ignatavičius G, Idzelis R, Greičiūtė K (2005a) Aplinkos apsauga kariniuose poligonuose. Monografija.Vilnius: Technika, p 302

    Google Scholar 

  • Beteta T (1995) Experiences with plastic tube biodigesters in Colombia. Universidad Nacional Agraria, Managua, p 27

    Google Scholar 

  • Bhat PR, Chanakya HN, Ravindranath NH (2001) Biogas plant dissemination: success story of Sirsi, India. Energy Sustain Dev 5(1):39–41

    Article  Google Scholar 

  • Bio Gas Holders [interaktyvus] [Žiūrėta (2010) m. rugsėjo 28 d.] Prieiga per internetą

    Google Scholar 

  • Bio Gas Plants [interaktyvus] [Žiūrėta (2010) m. rugsėjo 25 d.] Prieiga per internetą

    Google Scholar 

  • Biodujų saugyklos [interaktyvus] [Žiūrėta (2010) spalio 20 dieną] Prieiga per internetą

    Google Scholar 

  • Biogas generator [interaktyvus] [žiūrėta (2010) m. spalio 15 d.] Prieiga per internetą

    Google Scholar 

  • Biogas Plants [interaktyvus] (2007) Industrial Gas Plants [Žiūrėta 2010 m. Gegužės 10 d.]. Prieiga per internetą

    Google Scholar 

  • Biogas Technology and Design [interaktyvus] [Žiūrėta (2010) m. spalio 2 d.] Prieiga per internetą

    Google Scholar 

  • Botero R, Preston TR (1995) Low-cost biodigester for production of fuel and fertilizer from manure (Spanish). Manuscrito ineditado CIPAV, Cali, pp 1–20

    Google Scholar 

  • Buffière P, Moletta R, Fonade C (1995) Continuous operations of a fluidized bed bioreactor for anaerobic digestion : residence time effect on degradation kinetics. Biotechnol Lett 17(8):833–838

    Article  Google Scholar 

  • Cascaval D, Galaction AI, Turnea M (2007a) Comparative analysis of mixing distribution in aerobic stirred bioreactor for simulated yeasts and fungus broths. J Ind Microbiol Biotechnol 34(1):35–47

    Article  CAS  Google Scholar 

  • Cascaval D, Galaction AI, Turnea M (2007b) Comparative analysis of mixing distribution in aecchi. F, Pavan P, Musacco A, Mata-Alvarez J, Valini G (1993) Digesting the organic fraction of municipal solid waste: moving from mesophilic (37 °C) to thermophilic (55 °C) conditions. Waste Manag Res 11:403–414

    Google Scholar 

  • Cecchi F, Fraverro PG, Perin G, Vallini G (1988) Comparison of co-digestion performance of two differently collected organic fractions of municipal solid wastes with sewage sludges. Environ Technol Lett 9(5):391–400

    Article  CAS  Google Scholar 

  • Cecchi F, Pavan P, Musacco A, Mata-Alvarez J, Sans C, Ballin E (1992) Comparison between thermophilic and mesophilic anaerobic digestion of sewage sludge coming from urban wastewater plants, Ingegneria Sanitaria Ambientale, 40:25–32

    Google Scholar 

  • CH Four Energy solution [interaktyvus] [Žiūrėta (2010) m. spalio 10 d.] Prieiga per internetą

    Google Scholar 

  • Chae KJ, Yim SK, Choi KH, Park WK, Lim DK (2002) Anaerobic digestion of swine manure: Sung-Hwan farm-scale biogas plant in Korea, pp 564–571 https://pdfs.semanticscholar.org/b51b/15d425e388daeccb6a5263b099ee8fad652a.pdf

    Google Scholar 

  • Chanakya HN, Borgaonkar S, Rajan MGC, Wahi M (1994) Two-phase fermentation of untreated leaf biomass to biogas. Biomass Bioenergy 5(5):359–367

    Article  Google Scholar 

  • Chanakya HN, Srivastav GP, Abraham AA (1998) High rate biomethanation using spent biomass as bacterial support. Curr Sci 74(12):1054–1059

    CAS  Google Scholar 

  • De Reu JC, Zwietering MH, Rombouts FM, Nout MJR (1993) Temperature control in solid-substrate fermentation through discontinuous rotation. Appl Microbiol Biotechnol 40:261–265

    Article  Google Scholar 

  • Demirbas A, Taylan O, Kaya D (2016) Biogas production from municipal sewage sludge (MSS). Energy Sources Part A: Recovery Util Environ Eff 38(20):3027–3033

    Article  CAS  Google Scholar 

  • Denafas G (1997) Vietinių išteklių panaudojimo aplinkosaugos technologijų efektyvumui didinti galimybės, Aplinkos tyrimai, inžinerija ir vadyba 2(5):34–41

    Google Scholar 

  • Denafas G, Žaliauskienė A Revoldas V (2001) Atliekų ir biomasės panaudojimo energetikos ir transporto reikmėms ekologiškumas, Aplinkos tyrimai, inţinerija ir vadyba 4(18):30–39

    Google Scholar 

  • Deoblein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley-VCH, Weinheim, p 429

    Google Scholar 

  • Digest (2000) Volume III Biogas-Cost and Benefits and Biogas –Programe Implementation. Information and Advisory Service on Appropriate Technology. Germany, p 60. Available online at http://agrienvarchive.ca/bioenergy/download/biogas_gtz_de.pdf

  • Dobrovolskij VG (1997) Pochva, gorod, jekologija. Moskva. p 320 (in Russian)

    Google Scholar 

  • Durand A (1998) Solid state fermentation. Biofutur 181:41–43

    Article  Google Scholar 

  • Durand A, Renaud R, Maratray J, Almanza S (1995) The INRA-Dijon reactors: designs and applications. In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in solid state fermentation (proceedings of the 2nd international symposium on solid state fermentation FMS-95, Montpellier, France). Kluwer Academic Publishers, Dordrecht, pp 71–92

    Google Scholar 

  • Energetiniai įrenginiai [interaktyvus] [Žiūrėta (2010) m. spalio 16 d.] Prieiga per internetą

    Google Scholar 

  • Felby C, Larsen J, Jorgensen H, Vibe-Pedersen J (2008) 06 12. Enzymatic Hydrolysis of biomasses having a high dry matter (Dm) Content, United States Patent Application, No. US20080138862 A1

    Google Scholar 

  • Fisher T, Krieg A [interaktyvus] (2008) Planing and construction of biogas plant [Žiūrėta 2010 m. spalio 17 d.]. Prieiga per internetą

    Google Scholar 

  • Fung CJ, Mitchell DA (1995) Baffles increase performance of solid state fermentation in rotating drums. Biotechnol Tech 9:295–298

    Article  CAS  Google Scholar 

  • Galaction AI, Folescu E, Cascaval D (2005) Study on mixing distribution in stirred bioreactors. Simulated fermentation broths. Review Chimie 56:985–993

    Google Scholar 

  • Gomez (2005) Claudius da C. 2005. POWER GEN Europe 2005 – Mailand. Biogas in Germany. German Biogas Association, p 105

    Google Scholar 

  • Jagadish KS, Chanakya HN, Rajabapaiah P, Anand V (1998) Plug flow digestors for biogas generation from leaf biomass. J Biomass Bioenerg 14(5):415–423

    Article  CAS  Google Scholar 

  • JDV/Ralph B Carter Anaerobic Digester (2010) [interaktyvus] [Žiūrėta 2010 spalio 21 dieną] Prieiga per internetą

    Google Scholar 

  • Kalia A, Kanwar S (1995) Biogas generation from Ageratum in semi-continuous plant. Solar Energy Society of India 5(2):61–68

    Google Scholar 

  • Kalyuzhnui S, Federovich V, Nozhevnikova A (1998) Anaerobic treatment of liquid fraction of hen manure in UASB bioreactors. Bioresour Technol 65:221–225

    Article  Google Scholar 

  • Kennes C, Veiga MC (2001) Bioreactors for waste gas treatment. Springer, Netherlands, p 312

    Book  Google Scholar 

  • Kogeneracinės jėgainės [interaktyvus] (2010) [Ž/geoterminis.html>

    Google Scholar 

  • Kondrashov V, Oznobishen A, Špakauskas V (1999) Fuel injection system optimization by numerical experiments for reducing emissions info the atmosphere. Environ Eng 7(2):11

    Google Scholar 

  • Kowalik PJ, Randerson PF (1994) Nitrogen and phosphorus removal by willow stands irrigated with municipal waste water – a review of the polish experience. Biomass Bioenergy 6(1/2):133–139

    Article  Google Scholar 

  • Krasovickij J, Baltrenas P, Kolbeschkin B, Dobrosotskij V, Koltsov G (2006) Aero-dynamische Verfahren zur Erhohung der Leistungserzeugund der Entstaubung: Monogra-phie. Vilnius: Technika. p 352

    Google Scholar 

  • Kvasauskas M (2008) Biodujų eksperimentiniai tyrimai naudojant kiaulių mėšlą ir mėsos atliekas, 11-oji Lietuvos jaunųjų mokslininkų konferencija „Mokslas – Lietuvos ateitis“ 81–90

    Google Scholar 

  • Kvasauskas M, Baltrėnas P (2007) Biodujų, susidarančių iš skirtingų organinių atliekų, eksperimentiniai tyrimai. 10-oji jaunųjų mokslininkų konferencija “Mokslas – Lietuvos ateitis”, įvykusios Vilniuje 2007 kovo 29 d., pranešimų medžiaga. Vilnius: Technika, pp 55–63

    Google Scholar 

  • Kvasauskas M, Baltrėnas P (2009) Research on anaerobically treated organic waste suitability for soil fertilisation. J Environ Eng Landsc Manag 17(4):205–211

    Article  Google Scholar 

  • Lagoon liners [interaktyvus] (2010) Biogas products [Žiūrėta 2010 m. spalio 16 d.]. Prieiga per internetą

    Google Scholar 

  • Marchaim U (1992) Biogas processes for sustainable development. MIGAL Galilee Technological Centre, Kiryat Shmona, p 231

    Google Scholar 

  • Marsh AJ, Stuart DM, Mitchell DA, Howes T (2000) Characterizing mixing in a rotating drum bioreactor for solid-state fermentation. Biotechnol Lett 22(6):473–477

    Article  CAS  Google Scholar 

  • Mini digester for testing different compositions of substrates in biogas production [interaktyvus] [Žiūrėta (2010) m. spalio 10 d.] Prieiga per internetą: < http://www.enterpriseeuropenetwork.at>

  • Mitchell DA, Krieger N, Merovic M (2006) Solid-state fermentation bioreactors– fundamentals of design and operation. Springer, Berlin Heidelberg, p 447

    Book  Google Scholar 

  • Mödinger F [interaktyvus] Sustainable clay brick production [Žiūrėta (2009) m. Lapkričio 18 d.]. Prieiga per internetą: < http://www.tbe-euro.com/downloads/biogas-reactors.pdf>

  • Nagel FJ, Tramper J, Bakker M, Rinzema A (2001) Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng 72(9):219–230

    Article  CAS  Google Scholar 

  • Nasir IM, Mohd Ghazi TI, Omar R, Idris A (2014) Bioreactor performance in the anaerobic digestion of cattle manure: a review. Energy Sources Part A: Recove Util Environ Eff 36:1476–1483

    Article  CAS  Google Scholar 

  • National Biogas and Manure Management Programme [interaktyvus] [Žiūrėta (2010) m. spalio 8 d.] Prieiga per internetą: Small Biogas System [interaktyvus]. [Žiūrėta 2010 m. spalio 10 d.] Prieiga per internetą

    Google Scholar 

  • Nepal Biogas Promotion Associationn (2010) [interaktyvus]. [Žiūrėta 2010 spalio 22 dieną] Prieiga per internetą

    Google Scholar 

  • New Digester Opportunities — Studying Digester Feasibility for Mid-Sized Dairy Farms [interaktyvus] [Žiūrėta (2010) m. spalio 6 d.] Prieiga per internetą

    Google Scholar 

  • Noyola A, Morgan-Sagastume LM, Lopez-Hernandez EJ (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Biotechnol 5:93–114

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. Part I. Bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Preston TR, Rodríguez L [interaktyvus] (2002) Low-cost biodigester as the epicenter of a ecological farming systems. Proceedings biodigesterworkshop March 2002 [Žiūrėta 2006 m. vasario 24 d.] Prieiga per internetą

    Google Scholar 

  • Pushnov A, Baltrenas P, Kagan A, Zagorskis A (2010) Ajerodinamika vozduhoochistnyh ustrojstv s zernistym sloem. Monografija. Vilnius: Technika p 346 (in Russian)

    Google Scholar 

  • Puxin biogas plant (2009) [interaktyvus]. [Žiūrėta 2010 spalio 21 dieną] Prieiga per internetą

    Google Scholar 

  • Qin SJ, Badgwell TA (1996) An overview of industrial model predictive control technology. In: Proceedings of the Fifth International Conference on Chemical Process Control, Tahoe City. p 181

    Google Scholar 

  • Revoldas V, Denafas G (2002) Degimo procesų ekologiškumo ir emisijų apskaičiavimų metodikos patikimumo tyrimai augaline biomase kūrenamuose katiluose ir krosnyse, Aplinkos tyrimai, inžinerija ir vadyba 1(19):43–51

    Google Scholar 

  • Riddell-Black D (1994) Sewage sludge as a fertilizer for short rotation energy coppice. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewater and Sludges. Swedish University of Agricultural Sciences, Uppsala, pp 91–100

    Google Scholar 

  • Rimatitytė I, Denafas G (2006) Komunalinės atliekos – atsinaujinantis energijos šaltinis. Iš Doktorantų ir jaunųjų mokslininkų konferencija „Jaunoji energetika 2006″. Kauno technologijos universitetas, Inžinerinės ekologijos katedra. Kaunas, 2006 m. birželio 8 d

    Google Scholar 

  • Rimkus E, Sinkevičius S (2007) Globali aplinkos kaita. Vilnius: Vilniaus Universitetas. p 299

    Google Scholar 

  • Rincon B, Borja R, Gonzalez JM, Portillo MC, Saiz-Jimenez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40(2):253–261

    Article  CAS  Google Scholar 

  • Sala Lizarraga JM (1994) Cogeneración: Aspectos termodinámicos, tecnológicos y económicos; 2 Edición; Universidad del País Vasco, Bilbao, p 163

    Google Scholar 

  • Savickas J (1996) Organinių atliekų anaerobinis apdorojimas bioreaktoriuose, Technologija, p 56

    Google Scholar 

  • Savickas J, Vrubliauskas S (1997) Biodujų gamybos ir panaudojimo galimybės Lietuvoje, Technologija, p 38

    Google Scholar 

  • Schutyser M, Weber F, Briels W, Boom R, Rinzema A (2000) Rational design of mixed solid-state fermenters, poster at the ESBES-3. In: Third European symposium on biochemical engineering science, department of biotechnology, Technical University, Denmark, Copenhagen, 11–13 September, pp 741–749

    Google Scholar 

  • Sharma SK, Mishra IM, Saini JS, Sharma MP (1989) Biogas from biomass. J Rural Techno 16(6):1–17

    Google Scholar 

  • Simenonov I, Chorukova E, Mamatarkova V, Nikolov L (2010) Biogas production from organic wastes in suspended cell cultures and in biofilms. Biotechnol Biotechnol Equip 24(1):558–566

    Article  Google Scholar 

  • Système d'usine de digesteur de méthane de la taille de la famille puxin [interaktyvus] [Žiūrėta (2010) m. spalio 10 d.] prieiga per internetą

    Google Scholar 

  • Zuokaitė E, Zigmontienė A (2009) Amoniako ir metano dujų, išsiskiriančių kompostuojant nuotekų dumblą, tyrimai, Mokslas – Lietuvos ateitis 4:110–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baltrėnas, P., Baltrėnaitė, E. (2018). The Types, Structure and Design of Small-Scale Bioreactors Producing Biogas. In: Small Bioreactors for Management of Biodegradable Waste. Springer, Cham. https://doi.org/10.1007/978-3-319-78211-9_4

Download citation

Publish with us

Policies and ethics