Skip to main content

Aspects of Producing Biogas from Biodegradable Waste in Small-Scale Bioreactors

  • Chapter
  • First Online:
  • 555 Accesses

Abstract

This chapter includes a description of biogas production characteristics in the small bioreactors, the composition and major properties of biogas, calculations of the predicted amount of biogas and methane generated, description of the typical charge of bioreactors as well as mathematical modelling of biogas generation kinetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso C, Zhu X (1998) Modeling of the biodegradation process in gas phase bioreactor. In: Proceedings of the USC-TRG, 1998 Conference on Biofiltration, Los Angeles, California. October 22–23, pp 211–218

    Google Scholar 

  • Anand V, Chanakya HN, Rajan MGC (1991) Solid phase fermentation of leaf biomass to biogas. Resour Conserv Recycl 6:23–33

    Article  Google Scholar 

  • Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today‘s earth system models. Endeavour 40(3):178–187

    Article  Google Scholar 

  • Angelidaki I, Ahring BK (1991) Ammonia inhibition during anaerobic thermophilic degradation of animal waste. In: Verach-tert H, Verstraete W (eds) Proceedings of the international symposium on environmental biotechnology, Royal Flemish Society of Engineers, 22–25 April 1991, 2:389–392.

    Google Scholar 

  • Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731

    Article  CAS  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    Article  CAS  Google Scholar 

  • Balsa-Canto E, Banga JR, Alonso AA, Vassiliadis VS (2000) Ecient optimal control of bioprocess using second-order information. Ind Eng Chem Res 39:4287–4295

    Article  CAS  Google Scholar 

  • Baltrėnaitė E, Butkus D (2007c) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15(4):200–207

    Google Scholar 

  • Baltrėnaitė E, Butkus D (2009) In: Navarro-Avino JP (ed) Capacities of Pinus Sylvestris, Betula Pendula and Alnus Glutinosa seedlings to extract trace metals from sewage sludge amended soil. Phytoremediation: the green salvation of the world. Department of Agrarian Sciences and of the Natural Environment, ESTCE University, Castellon .: Research Signpost, ISBN 9788130802695, pp 85–107

    Google Scholar 

  • Baltrėnas P, Zagorskis A (2008) Biofiltras-adsorberis. Lietuvos patentas Nr. LT 5528 B. Vilnius, 2008

    Google Scholar 

  • Baltrėnas P, Jankaitė A, Raistenskis E (2005b) Natūralių biodegradacijos procesų, vykstančių maisto atliekose eksperimentiniai tyrimai. eksperimentiniai tyrimai. J Environ Eng Landsc Manag 13(4):167–176

    Google Scholar 

  • Baltrėnas P, Jankaitė A, Raistenskis E (2006) Natūralių biodegradacijos procesų maisto atliekose, esant skirtingam drėgmės kiekiui, eksperimentiniai tyrimai. J Environ Eng Landsc Manag 14(4):173–181

    Google Scholar 

  • Berber R (1996) Control of batch reactors: a review. Chem Eng Res Des 74(Part A)3:56

    Google Scholar 

  • Bigeriego M, Delgado M, Carbonell V (1997) Aplicación de las tecnologías de fermentación anaerobia y otros procesos en la depuración de efluentes de origen ganadero. 1ª Edición. Ministerio de Agricultura, Pesca y Alimentación, Madrid, p 216

    Google Scholar 

  • Bischoff M (2009) Erkenntnisse beim Einsatz von Zusatz - und Hilfsstoffen sowie von Spurenelementen in Biogasanlagen. VDI-Ber 2057:111–123

    Google Scholar 

  • Borghi DA, Converti A, Palazzi M, Del Borghi M (1999) Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction municipal solid waste. Bioprocess Eng 20:553–560

    Article  Google Scholar 

  • Borja R, Sanchez E, Weiland P (1996) Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors. Process Biochem 31:477–484

    Article  CAS  Google Scholar 

  • Brazas A (2008) Galimi biologiškai skaidžių atliekų tvarkymo variantai Lietuvoje – techninis (technologinis) ir ekonominis pagrindimas. 2008 gegužės 5 d. seminaro „Biologiškai skaidžių atliekų tvarkymas: esama patirtis ir galimybės savivaldybėms“ pranešimo medžiaga

    Google Scholar 

  • Budrys R, Liužinas, Bernadišius V, Kriščiūnas J, Navickas K, Mažunaitienė D, Stirška V, Ciūnys A, Jucius T, Reventas R (2005) Skystos atliekos ir nuotekos žemės ūkyje. Tvarkymo techniniai sprendimai, VŠĮ grunto valymo technologijos, p 104

    Google Scholar 

  • Bui XA, Preston TR [interaktyvus] (1999) Gas production from pig manure fed at different loading rates to polyethylene tubular biodigesters, Livestock Research for Rural Development, 11(1): [Žiūrėta 2006 m. birželio 4 d.] Prieiga per internetą

    Google Scholar 

  • Busch G, Großmann J, Sieber M, Burkhardt M (2009a) A new sound technology for biogas from solid waste and biomass. Springer, TheNetherlands. Water Air Soil Pollut 9(1–2):89–97

    Google Scholar 

  • Busch G, Großmann J, Sieber M, Burkhardt M (2009b) A new sound technology for biogas from solid waste and biomass. J Ind Microbiol Biotechnol 34(1):35–47

    Google Scholar 

  • Carballa M, Omil F, Alder AC, Lema JM (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53(8):109–117

    Article  CAS  Google Scholar 

  • Cecchi F, Fraverro PG, Perin G, Vallini G (1988) Comparison of co-digestion performance of two differently collected organic fractions of municipal solid wastes with sewage sludges. Environ Technol Lett 9(5):391–400

    Article  CAS  Google Scholar 

  • Cecchi F, Pavan P, Musacco A, Mata-Alvarez J, Sans C, Ballin E (1992) Comparison between thermophilic and mesophilic anaerobic digestion of sewage sludge coming from urban wastewater plants, Ingegneria Sanitaria Ambientale, 40:25–32

    Google Scholar 

  • Cecchi F, Pavan P, Musacco A, Mata-Alvarez J, Valini G (1993) Digesting the organic fraction of municipal solid waste: moving from mesophilic (37 °C) to thermophilic (55 °C) conditions. Waste Manag Res 11:403–414

    Article  CAS  Google Scholar 

  • Čepanko V, Baltrėnas P (2007) Naujų biokuro rūšių naudojimo energetikos ūkyje galimybės, iš Aplinkos apsaugos inžinerija: 10-osios Lietuvos jaunųjų mokslininkų konferencijos “Mokslas – Lietuvos ateitis”, vykusios Vilniuje 2007 m. kovo 29 d., pranešimų rinkinys. Vilnius: Technika, 45–54. ISBN 978-9955-28-162-7

    Google Scholar 

  • Chanakya HN, Srivastav GP, Abraham AA (1998) High rate biomethanation using spent biomass as bacterial support. Curr Sci 74(12):1054–1059

    CAS  Google Scholar 

  • Chenlin L, Herbert F (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37(1):1–39

    Article  CAS  Google Scholar 

  • Christi Y (1999) Solid substrate fermentations, enzyme production, food enrichment. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology, fermentation, biocatalysis and bioseparation, vol 5, pp 2446–2462

    Google Scholar 

  • De Reu JC, Zwietering MH, Rombouts FM, Nout MJR (1993) Temperature control in solid-substrate fermentation through discontinuous rotation. Appl Microbiol Biotechnol 40:261–265

    Article  Google Scholar 

  • Demirecler E, Anderson GK (1998) Effect of sewage sludge addition on the start-up of the anaerobic digestion of OFMSW. Environ Technol Lett 19:837–843

    Article  Google Scholar 

  • Durand A (1998) Solid state fermentation. Biofutur 181:41–43

    Article  Google Scholar 

  • Durand A, Renaud R, Maratray J, Almanza S (1995) The INRA-Dijon reactors: designs and applications. In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in solid state fermentation (proceedings of the 2nd international symposium on solid state fermentation FMS-95, Montpellier, France). Kluwer Academic Publishers, Dordrecht, pp 71–92

    Google Scholar 

  • Durand A, Renaud R, Maratray J, Almanza S, Diez M (1996) INRADijon reactors for solid-state fermentation: design and applications. J Sci Ind Res 55:317–332

    CAS  Google Scholar 

  • Escobar GJ, Heikkilä MA (1999) Biogas production in farms, through anaerobic digestion of cattle and pig manure. Case studies and research activities in Europe. TEKES, OPET Finland, p 39

    Google Scholar 

  • Feng LY, Ren NQ, Chen Y, Zheng GX (2007) Ecological mechanism of fermentative hydrogen production by bacteria. Int J Hydrog Energy 32(6):755–760

    Article  CAS  Google Scholar 

  • Garcia-Heras JL, Salaberria A Prevot C Sancho L (1999) Increase of organic loading rate and specific methane production by splitting phases in anaerobic digestion of sewage sludge. In: Mata-Alvarez J, Tilche A, Cecchi F (eds) Proceedings of the II international symposium on anaerobic digestion of solid waste (II ISAD-SW), June, Barcelona, Spain, pp 15–17

    Google Scholar 

  • Gautam KM (1996) Country paper on biogas in Nepal. Paper presented at international conference on biomass energy systems organized by Tata Energy Research Institute, British Council Division and British High Commission, New Delhi, India. 26–27 February 1996, 11–18

    Google Scholar 

  • Genutis A, Navickas K, Rutkauskas G, Šateikis I (2003) Atsinaujinančios ir alternatyvios energijos naudojimas šilumos gamybai. Kaunas, Technologija, p 112

    Google Scholar 

  • Ghose TK (2003) Bioconversion of organic residues. Methane from integrated biological systems. Biochemical Engineering Research Centre, Indian Institute of Technology, New Delhi, p 12

    Google Scholar 

  • Girovich MJ (1996) Biosolids treatment and management–processes for beneficial use. CRC Press, Boca Raton, p 453

    Book  Google Scholar 

  • Gitilis VS, Melnik IA (1992) Spravochnoe posobie po vermikultirovaniju. Moskva: Nauka. p 304 (in Russian)

    Google Scholar 

  • Glaser B, Baltrėnas P, Kammann C, Kern J, Baltrėnaitė E (2017) Special issue on biochar as an option for sustainable resource management (EU COST action TD1107 final publication). J Environ Eng Landsc Manag 25(2):23–25

    Article  Google Scholar 

  • Gonzalez P (1998) Generación de residuos en la ganadería vacuna: problemática y tratamiento. 1ª Edición; Universidad de Oviedo, Oviedo, p 89

    Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomas for methane production. Biomass Bioenergy 13(1–2):83–113

    Article  CAS  Google Scholar 

  • Henrik O (2000) The use of digested slurry within Agriculture. AD-NETT- A Network on Anaerobic digestion of Agro- industrial wastes. Herning Municipal utilities, Denmark, pp 53–65

    Google Scholar 

  • Jagadish KS (1996) Biogas from leaf biomass – prospects and problems, from international conference on biomass energy systems, TERI, New Delhi, 26–27 February, 361–367

    Google Scholar 

  • Jankauskas V (2004) Elektros energijos, pagamintos naudojant atsinaujinančius energijos išteklius, rėmimo būdai. Energetika 4:1–11

    Google Scholar 

  • Janssen R (2008) Biogas Handook. Published by University of Southern Denmark Esbjerg, Niels Bohrs Vej 9–10, DK-6700 Esbjerg, Denmark, p 125

    Google Scholar 

  • Janulis PP (2007) Bioenergetikos plėtros perspektyvų analizė ir būtinos priemonės, siekiant uţtikrinti mokslinių tyrimų ir technologinės plėtros bioenergetikoje koordinavimą, Lietuvos Žemės Ūkio universitetas, p 82

    Google Scholar 

  • Janulis P, Navickas K (2004) Biokuro ir biodegalų plėtra: galimybės ir perspektyvos, Mano ūkis 11:44–45

    Google Scholar 

  • Janušauskas RJ (2003) Biodujų gamyba iš žemės ūkio ir maisto pramonės atliekų, Energetika 4:102–106

    Google Scholar 

  • Jasinskas A (2007) Biomasės auginimo, ruošimo ir naudojimo kurui technologijos ūkinin-kams ar smulkioms įmonėms. LŽŪU Žemės ūkio inžinerijos institutas. Raudondvaris. p 47

    Google Scholar 

  • Jasinskas A, Liubarskis V (2003) Energetiniai augalai ir jų naudojimo technologijos. Kaunas. p 96

    Google Scholar 

  • Jaskelevičius B (2003) Medienos kuro naudojimo aspektai, Mokslas ir technika 1:26–29

    Google Scholar 

  • Jaskelevičius B (2009) Terminis atliekų apdorojimas, mokomoji knyga.Vilnius, Technika: p 148

    Google Scholar 

  • Jeong JW, Snay J, Ataai MM (1990) A mathematical model for examining growth and sporulation processes of Bacillus subtilis. Biotechnol Bioenergy 35:160–184

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 2(1):119–134

    Article  CAS  Google Scholar 

  • Jutglar I, Banyeras LL (1998) Cogeneración de calor y electricidad. 1ªEdición; Ed. CEAC; Madrid, p 91

    Google Scholar 

  • Kalia A, Kanwar S (1995) Biogas generation from Ageratum in semi-continuous plant. Solar Energy Society of India 5(2):61–68

    Google Scholar 

  • Kayhanian M (1995) Biodegradation of the organic fraction of municipal solid waste in a high-solids anaerobic digester. Waste Manag Res 13:123–136

    Article  CAS  Google Scholar 

  • Khandelwal KC (1990) Biogas technology development and implementation strategies – Indian experience. In: International Conference on Biogas Technologies and Implementation Strategies, 10–15 January, Pune India (ed. BORDA), Bremen, FRG, pp 306–315

    Google Scholar 

  • Kolodynskij V, Baltrėnas P (2017b) Experimental research of biogas yield and quality produced from chicken manure. In: 10th International conference “Environmental Engineering”, 27–28 April 2017, Lithuania, pp 1–7

    Google Scholar 

  • Kompala DS, Ramkrishna D, Jansen NB, Tsao GT (1986) Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnol Bioeng 28(1044–1055):37

    Google Scholar 

  • Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste: a sourcebook for the production and use of renewable natural gas in California. Weatern United Dairymen, p 186

    Google Scholar 

  • Kvasauskas M (2009a) Mažų gabaritų bioreaktoriaus tyrimai ir kūrimas. Daktaro disertacija. p 166

    Google Scholar 

  • Kvasauskas M (2009b) Mažų gabaritų bioreaktoriaus tyrimas ir kūrimas [Research on and design of small scale bioreaktor] Vilnius: Technika, p 166

    Google Scholar 

  • Lemenžienė N. Kanapeckas J, Butkutė B (2009) Biodujų gamybai tinkamiausios paprastos šunažolės (Dactylis glomerata L.) veislės, selekcinės linijos ir ekotipai, Žemdirbystė-Agriculture 3:36–46

    Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24(1):1–21

    Article  CAS  Google Scholar 

  • Levenspiel O (1996) Ingeniería de las reacciones químicas., 5ª Edición; Ed. Reverté; Barcelona., p 224

    Google Scholar 

  • Lonsane BK, Saucedo-Castaneda G, Raimbault M, Roussos S, Viniegra-Gonzales G, Ghildyal NP, Ramakrishna M, Krishnaiah MM (1992) Scale-up strategies for solid state fermentation systems. Process Biochem 27:259–273

    Article  CAS  Google Scholar 

  • Lund B, Jensen VF, Have P, Ahring BK (1996) Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors. Antonie Van Leeuwenhoek 69:25–31

    Article  CAS  Google Scholar 

  • Lyberatos G, Skiadas IV (1999) Modelling of anaerobic digestion – a review. Global Nest 1(2):63–76

    Google Scholar 

  • Mackie RI, Bryant MP (1995) Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol 43:346–350

    Article  CAS  Google Scholar 

  • Martinėnas B (2004) Eksperimento duomenų statistinė analizė. Mokomoji knyga. 2-asis pataisytas ir papildytas leidimas. Vilnius: Technika, p 101

    Google Scholar 

  • Menind A, Olt J (2009) Biogas plant investment analysis, cost benefit and main factors. Engineering for Rural Development, Estonia, pp 339–343

    Google Scholar 

  • Mergaert K, Vander Haegen B, Verstraete A (1991) Pretrattamento anaerobico dei liquami urbani: possibilità di applicazione e tendenze future,Ingegneria Ambientale 20: 11Wastewater. Biotechnology and Bioengineering 79(1):43–52

    Google Scholar 

  • Mi Z (2008) Financing of domestic biogas plant in China, p 19 http://www.bibalex.org/Search4Dev/files/338206/171765.pdf

    Google Scholar 

  • Miltner M, Jordan C, Potetz A, Harasek M (2005) Behandlung von turbulenten Drall-Freistrahlen mit CFD (in German). Chem Ingenieur Technik 77(8):1061–1062

    Article  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation. Part II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35(10):1211–1225

    Article  CAS  Google Scholar 

  • Mitzlaff K [interaktyvus] (1988) Theory, modification, economic operation. A Publication of Deutsches Zentrum für Entwicklungstechnologien – GATE in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. [Žiūrėta 2007 m. lapkričio 4 d.] Prieiga per internetą

    Google Scholar 

  • Nagel FJ, Tramper J, Bakker M, Rinzema A (2001) Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng 72(9):219–230

    Article  CAS  Google Scholar 

  • Nigam P, Singh D (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 34(6):405–423

    Article  CAS  Google Scholar 

  • Oktyabrskiy V (2016) A new opinion of the greenhouse effect. St. Petersburg Polytechnical University Journal: Physics and mathematics 2:124–126

    Article  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. Part I. Bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Perez M, Romero LI, Sales D (2001) Organic matter degradation kinetics in an anaerobic Thermophilic fluidised bed bioreactor. Anaerobe 7(1):25–35

    Article  Google Scholar 

  • Planning and installing bioenergy systems: a guide for installers, architects and engineers (2005) German Solar Energy Society (DGS) and Ecofys. James & James (Science Pub-lishers) Ltd in the UK and USA. p 274

    Google Scholar 

  • Poggi-Varaldo HM, Oleszkiewicz J (1992) Anaerobic co-composting of municipal solid waste and waste sludge at high total solids levels. Environ Technol 13(3):409–421

    Article  CAS  Google Scholar 

  • Preißler D et al (2007) Anaerobic digestitionof energy crops without manure addition. 35.Symposium “ActualTasks ofn AgriculturalEngineering”, Opatija, Croatia, S, pp 363–370

    Google Scholar 

  • Qin SJ, Badgwell TA (1996) An overview of industrial model predictive control technology. In: Proceedings of the Fifth International Conference on Chemical Process Control, Tahoe City. p 181

    Google Scholar 

  • Raistenskis E, Paliulis D, Baltrėnas P (2005) Organinių atliekų biodestrukcijos proceso priklausomybės nuo aplinkos temperatūros eksperimentiniai tyrimai. Sveikatos mokslas 3:121–124

    Google Scholar 

  • Rajabapaiah P, Jayakumar S, Reddy AKN (1993) Biogas electricity – the Pura village case study. In: Johansson TB et al (eds) Renewable energy – sources for fuels and electricity. Island Press, Washington, DC, pp 787–815

    Google Scholar 

  • Ramachandra Rao TN (1996) Fermentation technology – a personal journey. KSCST, Indian Institute of Science, Bangalore, p 26

    Google Scholar 

  • Results of the Nation-wide Measuring Program of Biogas Produktion Systems (2004) Biogas without limits, Freising, pp 34–42

    Google Scholar 

  • Rubinow SI (2003) Introduction to Mathematical Biology. Courier Dover Publications, NewYork ISBN 0486425320, 400 psl

    Google Scholar 

  • Sala Lizarraga JM (1994) Cogeneración: Aspectos termodinámicos, tecnológicos y económicos; 2 Edición; Universidad del País Vasco, Bilbao, p 163

    Google Scholar 

  • Savickas J, Vrubliauskas S (1997) Biodujų gamybos ir panaudojimo galimybės Lietuvoje, Technologija, p 38

    Google Scholar 

  • Schügerl K, Bellgardt KH (2000) Chapter 2: bioprocess models. In: Bioreaction engineering modeling and control. Springer, Berlin Heidelberg, p 604

    Chapter  Google Scholar 

  • Sharma SK, Mishra IM, Saini JS, Sharma MP (1989) Biogas from biomass. J Rural Techno 16(6):1–17

    Google Scholar 

  • Shoemaker AHHM, Visser A (2000) Treatment of biogas. AD-NETT- A Network on Anaerobic digestion of Agro-industrial wastes. In: Henrik O (ed) Anaerobic digestion: Making energy and solving modern waste problems, pp 8–21

    Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, Prentice-Hall international series in the physical and chemical engineering sciences. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Simonini W (1990) Biotecnologie nella digestione anaerobica. Dallo smaltimento alla valorizzazione dei rifiuti, Inquinamento 12:67

    Google Scholar 

  • Sloufer S, Zaberskij O (1985) Viomacsa kak istochnik energii, Mir 25–47 (in Russian)

    Google Scholar 

  • Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616

    Article  CAS  Google Scholar 

  • Spall JC (2000) Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans Autom Control 45(10):1839–1853

    Article  Google Scholar 

  • Stein WW, Ziemba WT (2005) Applications of stochastic programming. SIAM, Philadelphia, p 709

    Google Scholar 

  • Stępniewski W, Horn R, Martyniuk S (2002) Managing soil biophysical properties for environmental protection. Agric Ecosyst Environ 88:175–181

    Article  Google Scholar 

  • Stuart DM, Mitchell DA, Johns MR, Lister JD (1999) Solid-state fermentation in rotating drum bioreactors: operating variables affect performance through their effects on transport phenomena. Biotechnol Bioeng 63(4):383–391

    Article  CAS  Google Scholar 

  • Vaitiekūnas P, Špakauskas V (2003) Šilumos ir masės pernašos procesų aplinkoje mode-liavimo principai: mokomoji knyga. Vilnius: Technika. p 194

    Google Scholar 

  • Vaitiekūnas P, Katinas V, Markevičius A (2004) Simulation of conductive-convective heat transfer in a natural basin. J Environ Eng Landsc Manag 12(2):58–62

    Google Scholar 

  • Valorga, Process SA (Beteau JF, Graindorge PRBFR) (1994) 03 02. Process and installation for controlling the methane fermentation of organic materials. European patent Nr. EP19930905392 A1. p 26

    Google Scholar 

  • Vekteris V (2000) Matavimų teorija ir praktika. Vilnius: Žiburys, p 380

    Google Scholar 

  • Vindis P, Mursec B, Janzekovic M, Cus F (2009) The impact of mesophilic and thermophilic anaerobic digestion on biogas production. J Achiev Mater Manuf Eng 36(2):192–198

    Google Scholar 

  • Vorbrodt-Strzałka K, Pikoń K (2013) Environmental impacts associated with production and utilization of agricultural biogas, archives of waste management and environmental protection. Archives of Waste Management and Environmental Protection 15(4):1–12

    Google Scholar 

  • Vrubliauskas S, Krušinskas V (2001) Šiltnamio efektą sukeliančių dujų emisijų mažini-mas, naudojant atsinaujinančius energijos šaltinius, Aplinkos inžinerija 1:61–66

    Google Scholar 

  • Vrubliauskas S, Pedišius N (2005) Kietojo biokuro standartizavimas ES ir Lietuvoje, Energetika 1:16–22

    Google Scholar 

  • Wagnerova E, Shwarzbacherova E (1998) The using of biogas from municipal wastes heaps. In: VII. International scientific conference on combustion and heat technology, Miskolc, pp 63–71

    Google Scholar 

  • Weeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126(12):1073–1081

    Google Scholar 

  • Willson GB (1989) Combining raw materials for composting. Biocycle Magazine 30(8):82–85

    CAS  Google Scholar 

  • Xue M, Liu D, Zhang H, Qi H, Lei Z (1992) A pilot process of solid state fermentation from sugar beet pulp for the production of microbial protein. J Ferment Bioeng 73(3):203–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baltrėnas, P., Baltrėnaitė, E. (2018). Aspects of Producing Biogas from Biodegradable Waste in Small-Scale Bioreactors. In: Small Bioreactors for Management of Biodegradable Waste. Springer, Cham. https://doi.org/10.1007/978-3-319-78211-9_2

Download citation

Publish with us

Policies and ethics