Skip to main content

Epigenetics and Periodontitis: A Source of Connection to Systemic Diseases

  • Chapter
  • First Online:
Translational Oral Health Research

Abstract

Over the past 15 years, there has been intense research interest in periodontitis and its associations with several systemic conditions and how periodontitis can modify the expression of those diseases. The area that looks forward in those relationships is called periodontal medicine. Offenbacher described periodontal medicine as a discipline that focuses on the investigation of associations between periodontal diseases and systemic diseases and their biological plausibility in human populations and in animal models. It has been reported that periodontal disease may independently increase the risk of diabetes mellitus, cardiovascular disease, preterm or low-weight delivery, or rheumatoid arthritis. On the other hand, periodontitis is a chronic infection, which pathogenesis is orchestrated by multiple factors. Within those factors, genetics and epigenetics may have an important role in the pathogenesis. Epigenetics is a new area in research that is defined as genetic control by factors other than an individual’s DNA sequence via silencing certain genes while promoting others. These processes involve regulating transcription factor and access to chromatin, as well as microRNA (miRNA) and long noncoding RNA (lncRNA) regulating the expression of mRNA. In this chapter, we are going to deal with periodontitis pathogenesis, the role of epigenetics in its process, and the new connections of periodontitis and some systemic conditions by the expression of some epigenetic factors. This basic knowledge drives to know how to understand the possible connections and some targets to cope with in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eke PI, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611–22.

    Article  Google Scholar 

  2. Kassebaum NJ, et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045–53.

    Article  Google Scholar 

  3. Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontology 2000. 2015;69(1):18–27.

    Article  Google Scholar 

  4. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontology 2000. 2005;38:135–87.

    Article  Google Scholar 

  5. Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontology 2000. 2010;54(1):78–105.

    Article  Google Scholar 

  6. Pathirana RD, O’Brien-Simpson NM, Reynolds EC. Host immune responses to Porphyromonas gingivalis antigens. Periodontology 2000. 2010;52(1):218–37.

    Article  Google Scholar 

  7. Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease. Periodontol. 2015;69(1):201–20.

    Article  Google Scholar 

  8. Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79(8 Suppl):1560–8.

    Article  Google Scholar 

  9. Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol. 2015;86(4):556–68.

    Article  Google Scholar 

  10. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81(1):145–66.

    Article  Google Scholar 

  11. Smale ST. Transcriptional regulation in the innate immune system. Curr Opin Immunol. 2012;24(1):51–7.

    Article  Google Scholar 

  12. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30(1):295–312.

    Article  Google Scholar 

  13. Rebane A, Akdis CA. MicroRNAs: essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013;132(1):15–26.

    Article  Google Scholar 

  14. Janket S-J, Qureshi M, Bascones-Martinez A, González-Febles J, Meurman JH. Holistic paradigm in carcinogenesis: genetics, epigenetics, immunity, inflammation and oral infections. World J Immunol. 2017;7(2):11.

    Article  Google Scholar 

  15. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.

    Article  Google Scholar 

  16. Ptashne M. On the use of the word ‘epigenetic’. Curr Biol. 2007;17(7):R233–6.

    Article  Google Scholar 

  17. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44:S12–22.

    Article  Google Scholar 

  18. Berglundh T, Donati M. Aspects of adaptive host response in periodontitis. J Clin Periodontol. 2005;32(Suppl 6):87–107.

    Article  Google Scholar 

  19. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  Google Scholar 

  20. Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontology 2000. 2014;64(1):95–110.

    Article  Google Scholar 

  21. Yin L, Chung WO. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011;4(4):409–19.

    Article  Google Scholar 

  22. Martins MD, et al. Epigenetic modifications of histones in periodontal disease. J Dent Res. 2015;95(2):215–22. Available at: http://journals.sagepub.com/doi/10.1177/0022034515611876

    Article  Google Scholar 

  23. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76(1):75–100.

    Article  Google Scholar 

  24. Dev A, et al. NF-κB and innate immunity. Curr Top Microbiol Immunol. 2011;349(Chapter 102):115–43.

    PubMed  Google Scholar 

  25. Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013;24(9):2377–86.

    Article  Google Scholar 

  26. Meurman JH. Genetic regulation of inflammation – micro-RNA revolution? Oral Dis. 2017;23(1):1–2.

    Article  Google Scholar 

  27. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65.

    Article  Google Scholar 

  28. Nahid MA, et al. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE−/− mice during experimental periodontal disease. Infect Immun. 2011;79(4):1597–605.

    Article  Google Scholar 

  29. Taganov KD, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.

    Article  Google Scholar 

  30. Meisgen F, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol. 2014;134(7):1931–40.

    Article  Google Scholar 

  31. Quinn EM, et al. MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 2013;8(4):e62232.

    Article  Google Scholar 

  32. Honda T, et al. Porphyromonas gingivalis lipopolysaccharide induces miR-146a without altering the production of inflammatory cytokines. Biochem Biophys Res Commun. 2012;420(4):918–25.

    Article  Google Scholar 

  33. Hung P-S, et al. miR-146a induces differentiation of periodontal ligament cells. J Dent Res. 2010;89(3):252–7.

    Article  Google Scholar 

  34. Wang P, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–33.

    Article  Google Scholar 

  35. Nowak M, et al. Activation of invariant NK T cells in periodontitis lesions. J Immunol. 2013;190(5):2282–91.

    Article  Google Scholar 

  36. Trotta R, et al. Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood. 2013;121(16):3126–34.

    Article  Google Scholar 

  37. Trotta R, et al. miR-155 regulates IFN-γ production in natural killer cells. Blood. 2012;119(15):3478–85.

    Article  Google Scholar 

  38. Wang Z, et al. Leukotriene B4 enhances the generation of proinflammatory microRNAs to promote MyD88-dependent macrophage activation. J Immunol. 2014;192(5):2349–56.

    Article  Google Scholar 

  39. Hou J, et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 2009;183(3):2150–8.

    Article  Google Scholar 

  40. Ruggiero T, et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J. 2009;23(9):2898–908.

    Article  Google Scholar 

  41. Chaushu S, et al. Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog. 2012;8(3):e1002601.

    Article  Google Scholar 

  42. Krämer B, et al. Role of the NK cell-activating receptor CRACC in periodontitis. Infect Immun. 2013;81(3):690–6.

    Article  Google Scholar 

  43. Yang J-S, et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A. 2010;107(34):15163–8.

    Article  Google Scholar 

  44. Song L, et al. miR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops. Cell Res. 2013;23(2):274–89.

    Article  Google Scholar 

  45. Smyth LA, et al. MicroRNAs affect dendritic cell function and phenotype. Immunology. 2015;144(2):197–205.

    Article  Google Scholar 

  46. Dunand-Sauthier I, et al. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood. 2011;117(17):4490–500.

    Article  Google Scholar 

  47. Rosenberger CM, et al. miR-451 regulates dendritic cell cytokine responses to influenza infection. J Immunol. 2012;189(12):5965–75.

    Article  Google Scholar 

  48. Liu X, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J Immunol. 2010;185(12):7244–51.

    Article  Google Scholar 

  49. Mraz M, et al. MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood. 2012;119(9):2110–3.

    Article  Google Scholar 

  50. Gracias DT, et al. The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol. 2013;14(6):593–602.

    Article  Google Scholar 

  51. O’Connell RM, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33(4):607–19.

    Article  Google Scholar 

  52. Parachuru VPB, et al. Forkhead box P3-positive regulatory T-cells and interleukin 17-positive T-helper 17 cells in chronic inflammatory periodontal disease. J Periodontal Res. 2014;49(6):817–26.

    Article  Google Scholar 

  53. Zhao M, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol. 2014;150(1):22–30.

    Article  Google Scholar 

  54. Zou Y, et al. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis. J Cell Biochem. 2015;116(4):640–7.

    Article  Google Scholar 

  55. Goto K, et al. The transcribed-ultraconserved regions in prostate and gastric cancer: DNA hypermethylation and microRNA-associated regulation. Oncogene. 2016;35(27):3598–606.

    Article  Google Scholar 

  56. Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Periodontol. 2013;84(4 Suppl):S113–34.

    PubMed  Google Scholar 

  57. Tonetti MS, Van Dyke TE, Working Group 1 of the Joint EFP/AAP Workshop. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol. 2013;40(Suppl 14):S24–9.

    PubMed  Google Scholar 

  58. Suvan J, et al. Association between overweight/obesity and periodontitis in adults. A systematic review. Obes Rev. 2011;12(5):e381–404.

    Article  Google Scholar 

  59. Suvan J, et al. Association between overweight/obesity and increased risk of periodontitis. J Clin Periodontol. 2015. https://doi.org/10.1111/jcpe.12421.

  60. Fantuzzi G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine. 2013;64(1):1–10.

    Article  Google Scholar 

  61. Subedi A, Park P-H. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway. Cytokine. 2013;64(3):638–41.

    Article  Google Scholar 

  62. Perri R, et al. MicroRNA modulation in obesity and periodontitis. J Dent Res. 2012;91(1):33–8.

    Article  Google Scholar 

  63. Dietrich T, et al. The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease. J Clin Periodontol. 2013;40(Suppl 14):S70–84.

    PubMed  Google Scholar 

  64. Liljestrand JM, et al. Missing teeth predict incident cardiovascular events, diabetes, and death. J Dent Res. 2015;94(8):1055–62.

    Article  Google Scholar 

  65. Mäntylä P, et al. Acute myocardial infarction elevates serine protease activity in saliva of patients with periodontitis. J Periodontal Res. 2012;47(3):345–53.

    Article  Google Scholar 

  66. Widén C, et al. Systemic inflammatory impact of periodontitis on acute coronary syndrome. J Clin Periodontol. 2016;43(9):713–9.

    Article  Google Scholar 

  67. Kebschull M, et al. “Gum bug, leave my heart alone!”—epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res. 2010;89(9):879–902.

    Article  Google Scholar 

  68. Reyes L, et al. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Clin Periodontol. 2013;40(Suppl 14):S30–50.

    PubMed  Google Scholar 

  69. Aarabi G, et al. Genetic susceptibility contributing to periodontal and cardiovascular disease. J Dent Res. 2017;96(6):610–7.

    Article  Google Scholar 

  70. Bochenek G, et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22(22):4516–27.

    Article  Google Scholar 

  71. Schaefer AS, et al. Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. Circ Cardiovasc Genet. 2015;8(1):159–67.

    Article  Google Scholar 

  72. Teeuw WJ, et al. A lead ANRIL polymorphism is associated with elevated CRP levels in periodontitis: a pilot case-control study. PLoS One. 2015;10(9):e0137335.

    Article  Google Scholar 

  73. Kaur S, White S, Bartold PM. Periodontal disease and rheumatoid arthritis: a systematic review. J Dent Res. 2013;92(5):399–408. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23525531&retmode=ref&cmd=prlinks

    Article  Google Scholar 

  74. Koziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep. 2014;16(3):408.

    Article  Google Scholar 

  75. de Pablo P, et al. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol. 2009;5(4):218–24. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19337286&retmode=ref&cmd=prlinks

    Article  Google Scholar 

  76. Mikuls TR, et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(5):1090–100.

    Article  Google Scholar 

  77. Ziebolz D, et al. Clinical periodontal and microbiologic parameters in patients with rheumatoid arthritis. J Periodontol. 2011;82(10):1424–32.

    Article  Google Scholar 

  78. Konig MF, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 2016;8(369):369ra176.

    Article  Google Scholar 

  79. Marotte H. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA-DR shared epitope and severity of bone destruction. Ann Rheum Dis. 2005;65(7):905–9.

    Article  Google Scholar 

  80. Janssen KMJ, et al. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients. J Clin Periodontol. 2017;44(6):577–84.

    Article  Google Scholar 

  81. Gordon JAR, et al. Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease. Bone. 2015;81:739–45.

    Article  Google Scholar 

  82. Ahn J, et al. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055–8.

    Article  Google Scholar 

  83. Michaud DS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2013;62(12):1764–70.

    Article  Google Scholar 

  84. Chang JS, et al. Investigating the association between periodontal disease and risk of pancreatic cancer. Pancreas. 2016;45(1):134–41.

    Article  Google Scholar 

  85. Hwang IM, et al. Periodontal disease with treatment reduces subsequent cancer risks. QJM. 2014;107(10):805–12.

    Article  Google Scholar 

  86. Li A, et al. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010;9(4):321–9.

    Article  Google Scholar 

  87. Archer SY, Hodin RA. Histone acetylation and cancer. Curr Opin Genet Dev. 1999;9(2):171–4.

    Article  Google Scholar 

  88. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.

    Article  Google Scholar 

  89. Hung K-F, et al. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 2016;53:42–7.

    Article  Google Scholar 

  90. Kent OA, et al. Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol Cancer Res. 2016;14(3):267–77.

    Article  Google Scholar 

  91. Lerner C, et al. Characterization of miR-146a and miR-155 in blood, tissue and cell lines of head and neck squamous cell carcinoma patients and their impact on cell proliferation and migration. J Cancer Res Clin Oncol. 2016;142(4):757–66.

    Article  Google Scholar 

  92. Wu J, Xie H. Expression of long noncoding RNA-HOX transcript antisense intergenic RNA in oral squamous cell carcinoma and effect on cell growth. Tumour Biol. 2015;36(11):8573–8.

    Article  Google Scholar 

  93. Wu Y, et al. Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol. 2015;46(6):2586–94.

    Article  Google Scholar 

  94. Cannuyer J, et al. A gene expression signature identifying transient DNMT1 depletion as a causal factor of cancer-germline gene activation in melanoma. Clin Epigenetics. 2015;7:114.

    Article  Google Scholar 

  95. Merry CR, et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 2015;24(21):6240–53.

    Article  Google Scholar 

  96. Mariotti A, et al. The DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT cooperatively promote resistance to 5-Aza-2′-deoxycytidine (decitabine) and midostaurin (PKC412) in lung cancer cells. J Biol Chem. 2015;290(30):18480–94.

    Article  Google Scholar 

  97. Tian H-P, et al. DNA methylation affects the SP1-regulated transcription of FOXF2 in breast cancer cells. J Biol Chem. 2015;290(31):19173–83.

    Article  Google Scholar 

  98. Chan H-L, et al. MiR-376a and histone deacetylation 9 form a regulatory circuitry in hepatocellular carcinoma. Cell Physiol Biochem. 2015;35(2):729–39.

    Article  Google Scholar 

  99. Karczmarski J, et al. Histone H3 lysine 27 acetylation is altered in colon cancer. Clin Proteomics. 2014;11(1):24.

    Article  Google Scholar 

  100. Phi van DK, et al. Histone deacetylase HDAC1 downregulates transcription of the serotonin transporter (5-HTT) gene in tumor cells. Biochim Biophys Acta. 2015;1849(8):909–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bascones-Martinez D.D.S., M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bascones-Martinez, A., González-Febles, J. (2018). Epigenetics and Periodontitis: A Source of Connection to Systemic Diseases. In: Meurman, J. (eds) Translational Oral Health Research. Springer, Cham. https://doi.org/10.1007/978-3-319-78205-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78205-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78204-1

  • Online ISBN: 978-3-319-78205-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics