Bragg Diffraction Patterns as Graph Characteristics

  • Francisco EscolanoEmail author
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)


In this paper we establish a link between diffraction theory and graph characterization through the Schrödinger operator. This provides a natural way of characterizing wave propagation on a graph. In order to do so, we compute the spatio-temporal Fourier transform of the operator and then pack its spherical representation in a point of a Stiefel manifold. We show that when the temporal interval of analysis is set according to quantum efficiency principles the proposed approach outperforms the alternatives in graph discrimination.


Diffraction Schrödinger operator Stiefel manifolds 



F. Escolano is funded by the project TIN2015-69077-P of the Spanish Government.


  1. 1.
    Aziz, F., Wilson, R.C., Hancock, E.R.: Graph characterization via backtrackless paths. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 149–162. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  2. 2.
    Peng, R., Wilson, R., Hancock, E.: Graph characterization via ihara coefficients. IEEE Trans. Neural Netw. 22(2), 233–245 (2011)CrossRefGoogle Scholar
  3. 3.
    Das, K.C.: Extremal graph characterization from the bounds of the spectral radius of weighted graphs. Appl. Math. Comput. 217(18), 7420–7426 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Escolano, F., Hancock, E., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206(15) (2012)CrossRefGoogle Scholar
  5. 5.
    Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806(9) (2013)CrossRefGoogle Scholar
  6. 6.
    Xiao, B., Hancock, E., Wilson, R.: Graph characteristics from the heat kernel trace. Pattern Reogn. 42(11), 2589–2606 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Aubry M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: IEEE International Conference on Computer Vision (ICCV), Workshop on Dynamic Shape Capture and Analysis (4DMOD) (2011)Google Scholar
  8. 8.
    Rossi, L., Torsello, A., Hancock, E.: Approximate axial symmetries from continuous time quantum walks. In: Gimel’farb, G. (ed.) SSPR/SPR 2012. LNCS, pp. 144–152. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  9. 9.
    Emms, D., Wilson, R.C., Hancock, E.: Graph embedding using quantum commute times. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  10. 10.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  12. 12.
    Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  13. 13.
    Stone, M.H.: On one-parameter unitary groups in Hilbert space. Ann. Math. 33(3), 643–648 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oliva, A., Torralba, A.: Modeling the shape of a scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Torralba, A., Oliva, A.: Statistics of natural image categories. Network 14, 391–412 (2003)CrossRefGoogle Scholar
  16. 16.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kim, T.-K., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1005–1018 (2007)CrossRefGoogle Scholar
  18. 18.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Turaga, P.K., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)CrossRefGoogle Scholar
  20. 20.
    Harandi, M.T., Sanderson, C., Shirazi, S.A., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR 2011, pp. 2705–2712 (2011)Google Scholar
  21. 21.
    Escolano, F., Hancock, E.R., Lozano, M.A.: Graph matching through entropic manifold alignment. In: CVPR 2011, pp. 2417–2424 (2011)Google Scholar
  22. 22.
    Escolano, F., Hancock, E.R., Lozano, M.A.: Graph similarity through entropic manifold alignment. SIAM J. Imaging Sci. 10(2), 942–978 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(2–3), 37–87 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching problem. IEEE Trans. PAMI 31(12), 2227–2242 (2009)CrossRefGoogle Scholar
  25. 25.
    Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. PAMI 26(4), 515–519 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and AIUniversity of AlicanteAlicanteSpain
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations