Advertisement

Dominant Set Biclustering

  • Matteo DenittoEmail author
  • Manuele Bicego
  • Alessandro Farinelli
  • Marcello Pelillo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

Biclustering, which can be defined as the simultaneous clustering of rows and columns in a data matrix, has received increasing attention in recent years, being applied in many scientific scenarios (e.g. bioinformatics, text analysis, computer vision). This paper proposes a novel biclustering approach, which extends the dominant-set clustering algorithm to the biclustering case. In particular, we propose a new way of representing the problem, encoded as a graph, which allows to exploit dominant set to analyse both rows and columns simultaneously. The proposed approach has been tested by using a well known synthetic microarray benchmark, with encouraging results.

References

  1. 1.
    Ahmad, W., Khokhar, A.: cHawk: an efficient biclustering algorithm based on bipartite graph crossing minimization. In: VLDB Workshop on Data Mining in Bioinformatics (2007)Google Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)CrossRefGoogle Scholar
  3. 3.
    Bulò, S.R., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games Econ. Behav. 71(1), 193–211 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bulò, S.R., Pelillo, M.: Dominant-set clustering: a review. Eur. J. Oper. Res. 262(1), 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheng, Y., Church, G.: Biclustering of expression data. In: Proceeding of Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB00), pp. 93–103 (2000)Google Scholar
  6. 6.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)Google Scholar
  7. 7.
    Denitto, M., Farinelli, A., Figueiredo, M.A., Bicego, M.: A biclustering approach based on factor graphs and the max-sum algorithm. Pattern Recogn. 62, 114–124 (2017)CrossRefGoogle Scholar
  8. 8.
    Denitto, M., Magri, L., Farinelli, A., Fusiello, A., Bicego, M.: Multiple structure recovery via probabilistic biclustering. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 274–284. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_25 CrossRefGoogle Scholar
  9. 9.
    Ding, C., Zhang, Y., Li, T., Holbrook, S.R.: Biclustering protein complex interactions with a biclique finding algorithm. In: 2006 Sixth International Conference on Data Mining, ICDM 2006, pp. 178–187. IEEE (2006)Google Scholar
  10. 10.
    Farinelli, A., Denitto, M., Bicego, M.: Biclustering of expression microarray data using affinity propagation. In: Loog, M., Wessels, L., Reinders, M., Ridder, D. (eds.) Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, vol. 7036, pp. 13–24. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24855-9_2 CrossRefGoogle Scholar
  11. 11.
    Fitzgibbon, A.W., Zisserman, A.: Multibody structure and motion: 3-D reconstruction of independently moving objects. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 891–906. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45054-8_58 CrossRefGoogle Scholar
  12. 12.
    Flores, J.L., Inza, I., Larraaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3), 367–397 (2013). http://www.sciencedirect.com/science/article/pii/S0169260713002605 CrossRefGoogle Scholar
  13. 13.
    Gao, B., Liu, T.Y., Zheng, X., Cheng, Q.S., Ma, W.Y.: Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 41–50. ACM (2005)Google Scholar
  14. 14.
    Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Nat. Acad. Sci. USA 97(22), 12079–12084 (2000)CrossRefGoogle Scholar
  15. 15.
    Häne, C., Zach, C., Zeisl, B., Pollefeys, M.: A patch prior for dense 3D reconstruction in man-made environments. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 563–570. IEEE (2012)Google Scholar
  16. 16.
    Khan, S., Chen, L., Zhe, X., Yan, H.: Feature selection based on co-clustering for effective facial expression recognition. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), pp. 48–53. IEEE (2016)Google Scholar
  17. 17.
    Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinf. 1, 24–44 (2004)CrossRefGoogle Scholar
  18. 18.
    Melnykov, V.: Model-based biclustering of clickstream data. Comput. Stat. Data Anal. 93, 31–45 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: part ii. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)CrossRefGoogle Scholar
  20. 20.
    Oghabian, A., Kilpinen, S., Hautaniemi, S., Czeizler, E.: Biclustering methods: biological relevance and application in gene expression analysis. PloS One 9(3), e90801 (2014)CrossRefGoogle Scholar
  21. 21.
    Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering, p. 362. IEEE (2003)Google Scholar
  22. 22.
    Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inf. 57, 163–180 (2015)CrossRefGoogle Scholar
  23. 23.
    Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: Comparison of biclustering methods: a systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)CrossRefGoogle Scholar
  24. 24.
    Smith, J.M.: Evolution and the theory of games. In: Smith, J.M. (ed.) Did Darwin Get It Right?, pp. 202–215. Springer, Boston (1988).  https://doi.org/10.1007/978-1-4684-7862-4_22 CrossRefGoogle Scholar
  25. 25.
    Soltanolkotabi, M., Elhamifar, E., Candès, E.J.: Robust subspace clustering. Ann. Stat. 42(2), 669–699 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Process. Syst. 50(3), 267–280 (2008)CrossRefGoogle Scholar
  27. 27.
    Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31(10), 756–770 (2013)CrossRefGoogle Scholar
  28. 28.
    Tu, K., Ouyang, X., Han, D., Honavar, V.: Exemplar-based robust coherent biclustering. In: SDM, pp. 884–895. SIAM (2011)Google Scholar
  29. 29.
    Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matteo Denitto
    • 1
    Email author
  • Manuele Bicego
    • 1
  • Alessandro Farinelli
    • 1
  • Marcello Pelillo
    • 2
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.ECLT - University of VeniceVeniceItaly

Personalised recommendations