Skip to main content

Discretized Convex Relaxations for the Piecewise Smooth Mumford-Shah Model

  • Conference paper
  • First Online:
Book cover Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

Abstract

The Mumford-Shah model for image formation is an important, but also difficult energy functional. In this work we focus on several approaches based on convex relaxation operating on a discretized image domain. Existing methods typically use discretized intensity labels, but in this work we propose to retain the continuous label structure. To this end we employ a recently proposed framework for a new convex relaxation of the Mumford-Shah functional. Numerical results illustrate the performance of the various approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, G., Bouchitté, G., Maso, G.D.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Eqn. 16(3), 299–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.: Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma \)-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of ICCV, pp. 26–33 (2003)

    Google Scholar 

  5. Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Combettes, P.L.: Perspective functions: properties, constructions, and examples. Set-Valued Variational Anal. 1–18 (2016)

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: Proceedings of CVPR, pp. 261–268 (2004)

    Google Scholar 

  8. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Globerson, A., Jaakkola, T.: Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. In: NIPS (2007)

    Google Scholar 

  11. Hazan, T., Shashua, A.: Norm-prodcut belief propagtion: primal-dual message-passing for LP-relaxation and approximate-inference. IEEE Trans. Inf. Theory 56(12), 6294–6316 (2010)

    Article  MATH  Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Proceedings of ICCV, pp. 1762–1769 (2011)

    Google Scholar 

  14. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth Mumford-Shah functional. In: Proceedings of ICCV (2009)

    Google Scholar 

  15. Strekalovskiy, E., Goldluecke, B., Cremers, D.: Tight convex relaxations for vector-valued labeling problems. In: Proceedings of ICCV (2011)

    Google Scholar 

  16. Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)

    Article  Google Scholar 

  17. Zach, C.: Dual decomposition for joint discrete-continuous optimization. In: AISTATS (2013)

    Google Scholar 

  18. Zach, C., Häne, C., Pollefeys, M.: What is optimized in convex relaxations for multi-label problems: connecting discrete and continuously-inspired MAP inference. IEEE Trans. Pattern Anal. Mach. Intell. (2013)

    Google Scholar 

  19. Zach, C., Kohli, P.: A convex discrete-continuous approach for Markov random fields. In: Proceedings of ECCV (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Zach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zach, C., Häne, C. (2018). Discretized Convex Relaxations for the Piecewise Smooth Mumford-Shah Model. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics