Skip to main content

Limited-Memory Belief Propagation via Nested Optimization

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

  • 980 Accesses

Abstract

In this work we express resource-efficient MAP inference as joint optimization problem w.r.t. (i) messages (i.e. reparametrizations) and (ii) surrogate potentials that are upper bounds for the problem of interest and allow efficient inference. We show that resulting nested optimization task can be solved on trees by a convergent and efficient algorithm, and that its loopy extension also returns convincing MAP solutions in practice. We demonstrate the utility of the method on dense correspondence and image completion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stricly speaking we do not use a majorizer, but only (less constrained) upper bounds.

  2. 2.

    We focus on problems with at most pairwise cliques, which are most relevant in practice, but everything can be generalized to higher order cliques straightforwardly.

  3. 3.

    The expression \({\mathbf x}_\alpha \setminus x_s\) is shorthand for \(\{ {\mathbf x}'_\alpha : x'_s = x_s \}\). We will also write compactly \(\alpha \ni s\) instead of \(\{ \alpha : s \in \alpha \}\).

  4. 4.

    We prefer the term “resident set” over “particles”, since—in contrast to particle message passing—our method maintains messages also for non-resident states.

  5. 5.

    One can make the algorithm (trivially) convergent e.g. by conditionally updating the primal solution, such that the solution with minimal primal objective so far is always reported.

  6. 6.

    And \(4.7\%\) when using the weaker product label space relaxation [20] with unary potentials being computed on the fly.

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Besse, F., Rother, C., Fitzgibbon, A., Kautz, J.: PMBP: patchmatch belief propagation for correspondence field estimation. IJCV 110(1), 2–13 (2014)

    Article  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Drory, A., Haubold, C., Avidan, S., Hamprecht, F.A.: Semi-global matching: a principled derivation in terms of message passing. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 43–53. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_4

    Google Scholar 

  6. Globerson, A., Jaakkola, T.: Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. In: NIPS (2007)

    Google Scholar 

  7. Hazan, T., Shashua, A.: Norm-prodcut belief propagtion: primal-dual message-passing for LP-relaxation and approximate-inference. IEEE Trans. Inform. Theory 56(12), 6294–6316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of the CVPR, pp. 807–814 (2005)

    Google Scholar 

  9. Ihler, A., McAllester, D.: Particle belief propagation. In: AISTATS, pp. 256–263 (2009)

    Google Scholar 

  10. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  11. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Proc. 16(11), 2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kothapa, R., Pacheco, J., Sudderth, E.: Max-product particle belief propagation. Technical report, Master’s project report, Brown University, Department of Computer Science (2011)

    Google Scholar 

  13. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)

    Article  Google Scholar 

  14. Li, Y., Min, D., Brown, M.S., Do, M.N., Lu, J.: SPM-BP: sped-up patchmatch belief propagation for continuous MRFs. In: Proceedings of the ICCV, pp. 4006–4014 (2015)

    Google Scholar 

  15. Noorshams, N., Wainwright, M.J.: Stochastic belief propagation: a low-complexity alternative to the sum-product algorithm. IEEE Trans. Inform. Theory 59(4), 1981–2000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pacheco, J., Sudderth, E.: Proteins, particles, and pseudo-max-marginals: a submodular approach. In: Proceedings of the ICML, pp. 2200–2208 (2015)

    Google Scholar 

  17. Peng, J., Hazan, T., McAllester, D., Urtasun, R.: Convex max-product algorithms for continuous MRFs with applications to protein folding. In: Proceedings of the ICML (2011)

    Google Scholar 

  18. Roig, G., Boix, X., Nijs, R.D., Ramos, S., Kuhnlenz, K., Gool, L.V.: Active map inference in CRFs for efficient semantic segmentation. In: Proceedings of ICCV, pp. 2312–2319 (2013)

    Google Scholar 

  19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of the CVPR, pp. 195–202 (2003)

    Google Scholar 

  20. Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid image matching. CVIU 112(1), 91–99 (2008)

    Google Scholar 

  21. Shekhovtsov, A., Reinbacher, C., Graber, G., Pock, T.: Solving dense image matching in real-time using discrete-continuous optimization. arXiv preprint arXiv:1601.06274 (2016)

  22. Sontag, D., Globerson, A., Jaakkola, T.: Introduction to dual decomposition for inference. In: Optimization for Machine Learning. MIT Press (2011)

    Google Scholar 

  23. Sontag, D., Jaakkola, T.: Tree block coordinate descent for MAP in graphical models. J. Mach. Learn. Res. (2009)

    Google Scholar 

  24. Trinh, H., McAllester, D.: Unsupervised learning of stereo vision with monocular cues. In: Proceedings of the BMVC, pp. 72–81 (2009)

    Google Scholar 

  25. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theory 51(11), 3697–3717 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7) (2007)

    Google Scholar 

  27. Zach, C.: A principled approach for coarse-to-fine MAP inference. In: Proceedings of the CVPR, pp. 1330–1337 (2014)

    Google Scholar 

  28. Zach, C.: Limited-memory belief propagation via nested optimization (2017). Supplementary material https://sites.google.com/site/christophermzach/home/pdf/lmbp_supp.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Zach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zach, C. (2018). Limited-Memory Belief Propagation via Nested Optimization. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics