Limited-Memory Belief Propagation via Nested Optimization

  • Christopher ZachEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)


In this work we express resource-efficient MAP inference as joint optimization problem w.r.t. (i) messages (i.e. reparametrizations) and (ii) surrogate potentials that are upper bounds for the problem of interest and allow efficient inference. We show that resulting nested optimization task can be solved on trees by a convergent and efficient algorithm, and that its loopy extension also returns convincing MAP solutions in practice. We demonstrate the utility of the method on dense correspondence and image completion problems.


MAP inference Belief propagation Markov random fields 


  1. 1.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)CrossRefGoogle Scholar
  2. 2.
    Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48, 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Besse, F., Rother, C., Fitzgibbon, A., Kautz, J.: PMBP: patchmatch belief propagation for correspondence field estimation. IJCV 110(1), 2–13 (2014)CrossRefGoogle Scholar
  4. 4.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  5. 5.
    Drory, A., Haubold, C., Avidan, S., Hamprecht, F.A.: Semi-global matching: a principled derivation in terms of message passing. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 43–53. Springer, Cham (2014). Google Scholar
  6. 6.
    Globerson, A., Jaakkola, T.: Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. In: NIPS (2007)Google Scholar
  7. 7.
    Hazan, T., Shashua, A.: Norm-prodcut belief propagtion: primal-dual message-passing for LP-relaxation and approximate-inference. IEEE Trans. Inform. Theory 56(12), 6294–6316 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of the CVPR, pp. 807–814 (2005)Google Scholar
  9. 9.
    Ihler, A., McAllester, D.: Particle belief propagation. In: AISTATS, pp. 256–263 (2009)Google Scholar
  10. 10.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  11. 11.
    Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Proc. 16(11), 2649–2661 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kothapa, R., Pacheco, J., Sudderth, E.: Max-product particle belief propagation. Technical report, Master’s project report, Brown University, Department of Computer Science (2011)Google Scholar
  13. 13.
    Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Min, D., Brown, M.S., Do, M.N., Lu, J.: SPM-BP: sped-up patchmatch belief propagation for continuous MRFs. In: Proceedings of the ICCV, pp. 4006–4014 (2015)Google Scholar
  15. 15.
    Noorshams, N., Wainwright, M.J.: Stochastic belief propagation: a low-complexity alternative to the sum-product algorithm. IEEE Trans. Inform. Theory 59(4), 1981–2000 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pacheco, J., Sudderth, E.: Proteins, particles, and pseudo-max-marginals: a submodular approach. In: Proceedings of the ICML, pp. 2200–2208 (2015)Google Scholar
  17. 17.
    Peng, J., Hazan, T., McAllester, D., Urtasun, R.: Convex max-product algorithms for continuous MRFs with applications to protein folding. In: Proceedings of the ICML (2011)Google Scholar
  18. 18.
    Roig, G., Boix, X., Nijs, R.D., Ramos, S., Kuhnlenz, K., Gool, L.V.: Active map inference in CRFs for efficient semantic segmentation. In: Proceedings of ICCV, pp. 2312–2319 (2013)Google Scholar
  19. 19.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of the CVPR, pp. 195–202 (2003)Google Scholar
  20. 20.
    Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid image matching. CVIU 112(1), 91–99 (2008)Google Scholar
  21. 21.
    Shekhovtsov, A., Reinbacher, C., Graber, G., Pock, T.: Solving dense image matching in real-time using discrete-continuous optimization. arXiv preprint arXiv:1601.06274 (2016)
  22. 22.
    Sontag, D., Globerson, A., Jaakkola, T.: Introduction to dual decomposition for inference. In: Optimization for Machine Learning. MIT Press (2011)Google Scholar
  23. 23.
    Sontag, D., Jaakkola, T.: Tree block coordinate descent for MAP in graphical models. J. Mach. Learn. Res. (2009)Google Scholar
  24. 24.
    Trinh, H., McAllester, D.: Unsupervised learning of stereo vision with monocular cues. In: Proceedings of the BMVC, pp. 72–81 (2009)Google Scholar
  25. 25.
    Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theory 51(11), 3697–3717 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7) (2007)Google Scholar
  27. 27.
    Zach, C.: A principled approach for coarse-to-fine MAP inference. In: Proceedings of the CVPR, pp. 1330–1337 (2014)Google Scholar
  28. 28.
    Zach, C.: Limited-memory belief propagation via nested optimization (2017). Supplementary material

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toshiba Research EuropeCambridgeUK

Personalised recommendations