Advertisement

Fast Asymmetric Fronts Propagation for Voronoi Region Partitioning and Image Segmentation

  • Da ChenEmail author
  • Laurent D. Cohen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10746)

Abstract

In this paper, we introduce a generalized asymmetric fronts propagation model based on the geodesic distance maps and the Eikonal partial differential equations. One of the key ingredients for the computation of the geodesic distance map is the geodesic metric, which can govern the action of the geodesic distance level set propagation. We consider a Finsler metric with the Randers form, through which the asymmetry and anisotropy enhancements can be taken into account to prevent the fronts leaking problem during the fronts propagation. These enhancements can be derived from the image edge-dependent vector field such as the gradient vector flow. The numerical implementations are carried out by the Finsler variant of the fast marching method, leading to very efficient interactive segmentation schemes.

Notes

Acknowledgment

The authors would like to thank all the anonymous reviewers for their detailed remarks that helped us improve the presentation of this paper. The authors thank Dr. Jean-Marie Mirebeau from Université Paris-Sud for his fruitful discussion and creative suggestions. The first author also thanks Dr. Gabriel Peyré from ENS Paris for his financial support. This work was partially supported by the European Research Council (ERC project SIGMA-Vision).

References

  1. 1.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. JCP 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Malladi, R., Sethian, J., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. TPAMI 17(2), 158–175 (1995)CrossRefGoogle Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. TMI 16(2), 199–209 (1997)Google Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. IJCV 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. JCP 118(2), 269–277 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. TIP 19(12), 3243–3254 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Malladi, R., Sethian, J.A.: A real-time algorithm for medical shape recovery. In: Proceeding of ICCV, pp. 304–310 (1998)Google Scholar
  10. 10.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. TAC 40(9), 1528–1538 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Chen, D., Cohen, L.D.: Vessel tree segmentation via front propagation and dynamic anisotropic Riemannian metric. In: Proceedings of ISBI, pp. 1131–1134 (2016)Google Scholar
  13. 13.
    Arbeláez, P.A., Cohen, L.D.: Energy partitions and image segmentation. JMIV 20(1), 43–57 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bai, X., Sapiro, G.: Geodesic matting: a framework for fast interactive image and video segmentation and matting. IJCV 82(2), 113–132 (2009)CrossRefGoogle Scholar
  15. 15.
    Li, H., Yezzi, A.: Local or global minima: flexible dual-front active contours. TPAMI 29(1), 1–14 (2007)CrossRefGoogle Scholar
  16. 16.
    Cohen, L.D., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. CMBBE 10(4), 289–305 (2007)Google Scholar
  17. 17.
    Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. TPAMI 30(3), 412–423 (2008)CrossRefGoogle Scholar
  18. 18.
    Mirebeau, J.M.: Efficient fast marching with Finsler metrics. Numer. Math. 126(3), 515–557 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. JMIV 33(2), 209–221 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cohen, L.: Multiple contour finding and perceptual grouping using minimal paths. JMIV 14(3), 225–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59(2), 195 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for a Finsler elastica minimal path approach. IJCV 122(3), 458–483 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. TIP 7(3), 359–369 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. TPAMI 34(2), 315–327 (2012)CrossRefGoogle Scholar
  25. 25.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ToG 23(3), 309–314 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEREMADE, CNRS, University Paris Dauphine, PSL Research University, UMR 7534ParisFrance

Personalised recommendations